Reviews - Multi-Compound - HANs - HAMs - HNMs - Halobenzoquinones

Single DBP - Other

(See also: DBP Degradation)

 

Major Reports & Review Papers on Formation of Non-Regulated DBPs
Citation Notes Abstract

   

 

Multi-Compound Studies
Citation Notes Abstract

Shah, A.D. and Mitch, W.A. (2012) Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways. Environmental Science & Technology 46(1), 119-131.

  Interest in the formation of nitrogenous disinfection byproducts (N-DBPs) has increased because toxicological research has indicated that they are often more genotoxic, cytotoxic, or carcinogenic than many of the carbonaceous disinfection byproducts (C-DBPs) that have been a focus for previous research. Moreover, population growth has forced utilities to exploit source waters impaired by wastewater effluents or algal blooms. Both waters feature higher levels of organic nitrogen, that might serve as N-DBP precursors. Utilities are exploring new disinfectant combinations to reduce the formation of regulated trihalomethanes and haloacetic acids. As some of these new combinations may promote N-DBP formation, characterization of N-DBP formation pathways is needed. Formation pathways for halonitroalkanes, halonitriles, haloamides, and N-nitrosamines associated with chlorine, ozone, chlorine dioxide, UV, and chloramine disinfection are critically reviewed. Several important themes emerge from the review. First, the formation pathways of the N-DBP families are partially linked because most of the pathways involve similar amine precursors. Second, it is unlikely that a disinfection scheme that is free of byproduct formation will be discovered. Disinfectant combinations should be optimized to reduce the overall exposure to toxic byproducts. Third, the understanding of formation pathways should be employed to devise methods of applying disinfectants that minimize byproduct formation while accomplishing pathogen reduction goals. Fourth, the well-characterized nature of the monomers constituting the biopolymers that likely dominate the organic nitrogen precursor pool should be exploited to predict the formation of byproducts likely to form at high yields.
Bond, T., Huang, J., Templeton, M.R. and Graham, N. (2011) Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. Water Research 45(15), 4341-4354.   The presence of nitrogenous disinfection by-products (N-DBPs), including nitrosamines, cyanogen halides, haloacetonitriles, haloacetamides and halonitromethanes, in drinking water is of concern due to their high genotoxicity and cytotoxicity compared with regulated DBPs. Occurrence of N-DBPs is likely to increase if water sources become impacted by wastewater and algae. Moreover, a shift from chlorination to chloramination, an option for water providers wanting to reduce regulated DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs), can also increase certain N-DBPs. This paper provides a critical review of the occurrence and control of N-DBPs. Data collated from surveys undertaken in the United States and Scotland were used to calculate that the sum of analysed halonitromethanes represented 3-4% of the mass of THMs on a median basis; with Pearson product moment correlation coefficients of 0.78 and 0.83 between formation of dihaloacetonitriles and that of THMs and HAAs respectively. The impact of water treatment processes on N-DBP formation is complex and variable. While coagulation and filtration are of moderate efficacy for the removal of N-DBP precursors, such as amino acids and amines, biofiltration, if used prior to disinfection, is particularly successful at removing cyanogen halide precursors. Oxidation before final disinfection can increase halonitromethane formation and decrease N-nitrosodimethylamine, and chloramination is likely to increase cyanogen halides and NDMA relative to chlorination.
Chu, W. H., N. Y. Gao, et al. (2011). "Formation of nitrogenous disinfection by-products from pre-chloramination." Chemosphere 85(7): 1187-1191.
  A sampling survey investigated the formation of nitrogenous disinfection by-products (N-DBPs) and carbonaceous DBPs (C-DBPs) from pre-chloramination, an increasingly common treatment strategy in China for regulated C-DBP control, followed by subsequent conventional water treatment processes, i.e., coagulation, sedimentation, and filtration. Dihalogenated N-DBPs typically peaked in the summer and early autumn with a relatively higher temperature, with the maximum levels of dichloroacetamide (DCAcAm), dichloroacetonitrile (DCAN), bromochloroacetonitrile, dibromoacetonitrile and dichloroacetone at 1.8, 6.3, 6.0, 2.6 and 1.8 mu g L(-1) in the finished water, respectively. Also, the levels of all the dichlorinated N-DBPs were correlated with the ratio of dissolved organic nitrogen (DON) to dissolved organic carbon, implying autochthonous DON played an essential role in the formation of these DBPs. In contrast, the yields of trihalogenated DBPs [chloroform (CF), trichloronitromethane (TCNM) and trichloroacetone (TCAce)] appeared not to be significantly affected by seasons. CF and DCAN were the dominant species in trihalomethanes (THMs) and dihaloacetonitriles (DHANs), respectively. Bromine was more readily incorporated into DHANs to form brominated DBPs than THMs during pre-chloramination. Although pre-chloramination can ensure the finished water to meet with the current Chinese THM regulatory limits, the increased levels of TCNM and TCAce may be a new water quality concern

 

Haloacetonitiles
Citation Notes Abstract
Reckhow, D.A., Platt, T.L., MacNeill, A.L. and McClellan, J.N. (2001) Formation and Degradation of Dichloroacetonitrile in Drinking Waters. Journal of Water Supply Research and Technology-Aqua 50(1), 1-13.   Dichloroacetonitrile (DCAN) is an important example of a reactive disinfection by-product for which a large body of occurrence data exists. Although it is known to undergo base-catalysed hydrolysis, DCAN's peculiar dependence on reaction time, chlorine dose and pH has never been fully reconciled with expectations based on its presumed precursor (i.e. amino acid residues). The purpose of this research was to improve existing models for DCAN degradation and to use this information for interpretation of DCAN concentration profiles. Laboratory studies were performed using buffered solutions of DCAN, natural organic matter (NOM) and treated drinking waters, both with and without free residual chlorine. DCAN concentrations were measured as a function of reaction time. Results indicate a decomposition scheme encompassing three pathways of hydrolysis: attack by hydroxide, hypochlorite and water. Any one of the three pathways may predominate in drinking water systems, depending on the pH John Fl. McClellan and chlorine residual. The resulting chemical kinetic model was used to show that the DCAN formed (and subsequently decomposed) was often many times the actual measured DCAN concentration. DCAN formation was found to agree with expectations based on the underlying chemistry of chlorine attack on proteinaceous material.
Glezer, V., B. Harris, et al. (1999). "Hydrolysis of Haloacetonitriles: Linear Free Energy Relationship, Kinetics and Products." Water Research 33(8): 1938-1948.   The hydrolysis rates of mono-, di- and trihaloacetonitriles were studied in aqueous buffer solutions at different pH. The stability of haloacetonitriles decreases and the hydrolysis rate increases with increasing pH and number of halogen atoms in the molecule: The monochloroacetonitriles are the most stable and are also less affected by pH-changes, while the trihaloacetonitriles are the least stable and most sensitive to pH changes. The stability of haloacetonitriles also increases by substitution of chlorine atoms with bromine atoms. The hydrolysis rates in different buffer solutions follow first order kinetics with a minimum hydrolysis rate at intermediate pH. Thus, haloacetonitriles have to be preserved in weakly acid solutions between sampling and analysis. The corresponding haloacetamides are formed during hydrolysis and in basic solutions they can hydrolyze further to give haloacetic acids. Linear free energy relationship can be used for prediction of degradation of haloacetonitriles during hydrolysis in water solutions.
Bieber, T. I. and M. L. Trehy (1981). Dihaloacetonitriles in Chlorinated Natural Waters. Water Chlorination : Environmental Impact and Health Effects. Volume 4, Book 1, Chemistry and Water Treatment. Proceedings of the Fourth Conference on Water Chlorination. Jolley et al., eds. Pacific Grove, CA.
   
Trehy, M. L. and T. I. Bieber (1981). Detection, Identification, and Quantitative Analysis of Dihaloacetonitriles in Chlorinated Natural Waters. Advances in the Identification and Analysis of Organic Pollutants in Water, Volume 2, Ann Arbor Science.    

 

 

Haloacetamides
(related info may be found in: DBP Analysis and Health Effects pages)
Citation Notes Abstract
Chu, W.H., Gao, N.Y., Krasner, S.W., Templeton, M.R. and Yin, D.Q. (2012) Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water. Environmental Pollution 161, 8-14.   The formation of regulated and emerging halogenated carbonaceous (C-) and nitrogenous disinfection by-products (N-DBPs) from the chlor(am)ination and UV irradiation of tyrosine (Tyr) was investigated. Increased chlorine contact time and/or Cl-2/Tyr ratio increased the formation of most C-DBPs, with the exception of 4-chlorophenol, dichloroacetonitrile, and dichloroacetamideChloroform and dichloroacetic acid increased with increasing pH, dichloroacetonitrile first increased and then decreased, and other DBPs had maximum yields at pH 7 or 8. The addition of ammonia significantly reduced the formation of most C-DBPs but increased 4-chlorophenol, dichloroacetonitrile, dichloroacetamide, and trichloroacetonitrile yields for short prechlorination contact times before dosing ammonia. When UV irradiation and chlorination were performed simultaneously, the concentrations of the relatively stable C-DBPs increased, and the concentrations of dichloroacetonitrile, dichloroacetamide, and 4-chlorophenol decreased with increasing UV dose. This information was used to develop a mechanistic model for the formation of intermediate DBPs and end products from the interaction of disinfectants with tyrosine.
Chu, W.H., Gao, N.Y., Deng, Y., Templeton, M.R. and Yin, D.Q. (2011) Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere 85(7), 1187-1191.   A sampling survey investigated the formation of nitrogenous disinfection by-products (N-DBPs) and carbonaceous DBPs (C-DBPs) from pre-chloramination, an increasingly common treatment strategy in China for regulated C-DBP control, followed by subsequent conventional water treatment processes, i.e., coagulation, sedimentation, and filtration. Dihalogenated N-DBPs typically peaked in the summer and early autumn with a relatively higher temperature, with the maximum levels of dichloroacetamide (DCAcAm), dichloroacetonitrile (DCAN), bromochloroacetonitrile, dibromoacetonitrile and dichloroacetone at 1.8, 6.3, 6.0, 2.6 and 1.8 mu g L(-1) in the finished water, respectively. Also, the levels of all the dichlorinated N-DBPs were correlated with the ratio of dissolved organic nitrogen (DON) to dissolved organic carbon, implying autochthonous DON played an essential role in the formation of these DBPs. In contrast, the yields of trihalogenated DBPs [chloroform (CF), trichloronitromethane (TCNM) and trichloroacetone (TCAce)] appeared not to be significantly affected by seasons. CF and DCAN were the dominant species in trihalomethanes (THMs) and dihaloacetonitriles (DHANs), respectively. Bromine was more readily incorporated into DHANs to form brominated DBPs than THMs during pre-chloramination. Although pre-chloramination can ensure the finished water to meet with the current Chinese THM regulatory limits, the increased levels of TCNM and TCAce may be a new water quality concern.
Chu, W.H., Gao, N.Y., Deng, Y., Templeton, M.R. and Yin, D.Q. (2011) Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresource Technology 102(24), 11161-11166.   The formation of disinfection by-products (DBPs), including both nitrogenous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs), was investigated by analyzing chlorinated water samples following the application of three pretreatment processes: (i) powdered activated carbon (PAC) adsorption; (ii) KMnO(4) oxidation and (iii) biological contact oxidation (BCO), coupled with conventional water treatment processes. PAC adsorption can remove effectively the precursors of chloroform (42.7%), dichloroacetonitrile (28.6%), dichloroacetamide (DCAcAm) (27.2%) and trichloronitromethane (35.7%), which were higher than that pretreated by KMnO(4) oxidation and/or BCO process. The removal efficiency of dissolved organic carbon by BCO process (76.5%) -was superior to that by PAC adsorption (69.9%) and KMnO(4) oxidation (61.4%). However, BCO increased the dissolved organic nitrogen (DON) concentration which caused more N-DBPs to be formed during subsequent chlorination. Soluble microbial products including numerous DON compounds were produced in the BCO process and were observed to play an essential role in the formation of DCAcAm in particular.
Chu, W.H., Gao, N.Y., Deng, Y. and Krasner, S.W. (2010) Precursors of Dichloroacetamide, an Emerging Nitrogenous DBP Formed during Chlorination or Chloramination. Environmental Science & Technology 44(10), 3908-3912.   Haloacetamides (HAcAms) are an emerging class of nitrogenous disinfection byproducts (N-DBPs). However, there is a limited understanding about the precursors of HAcAms. In this study, we screened the precursors of dichloroacetamide (DCAcAm), the most commonly identified HAcAm in chlorinated or chloraminated drinking water. DCAcAm formation potential (FP) of raw water samples collected in different months from a reservoir in China was determined during chlorination, and the highest DCAcAm FP typically occurred in the summer samples. Dissolved organic matter (DOM) in a representative summer raw water sample was separated into six fractions by a series of resin elutions. Among them, hydrophilic acid (HiA) DOM showed the maximum DCAcAm FP, followed by hydrophilic bases (HiB) and, to a much lower extent, hydrophobic acids (HoA). Fluorescence excitation emission matrix (EEM) spectra revealed that a mass of protein-like substances in the HiA fraction, made up of amino acids (AAs), were the likely DCAcAm precursors. Finally, we investigated the DCAcAm yields of 20 AAs during chlorination. Among them, seven AAs (aspartic acid, histidine, tyrosine, tryptophan, glutamine, asparagine, phenylalanine) could form DCAcAm during chlorination, with the corresponding DCAcAm yields of 0.231, 0.189, 0.153, 0.104, 0.078, 0.058, and 0.050 mmol/mol AA.
Chu, W.H., Gao, N.Y. and Deng, Y. (2010) Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid. Journal of Hazardous Materials 173(1-3), 82-86.   The stability of haloacetamides (HAcAms) such as dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) was studied under different experimental conditions. The yield of HAcAms during aspartic acid (Asp) chlorination was measured at different molar ratio of chlorine atom to nitrogen atom (Cl/N), pH and dissolved organic carbon (DOC) mainly consisted of humic acid (HA) mixture. Ascorbic acid showed a better capacity to prevent the decay of DCAcAm and TCAcAm than the other two dechlorinating agents, thiosulfate and sodium sulfite. Lower Cl/N favored the DCAcAm formation, implying that breakpoint chlorination might minimize its generation. The pH decrease could lower the concentration of DCAcAm but favored dichloroacetonitrile (DCAN) formation. DCAcAm yield was sensitive to the DOC due to higher chlorine consumption caused by HA mixture. Two possible pathways of DCAcAm formation during Asp chlorination were proposed. Asp was an important precursor of DCAN, DCAcAm and dichloroacetic acid (DCAA), and thus removal of Asp before disinfection may be a method to prevent the formation of DCAcAm, DCAN and DCAA.
Chu, W.H., Gao, N.Y. and Deng, Y. (2009) Stability of Newfound Nitrogenous Disinfection By-products Haloacetamides in Drinking Water. Chinese Journal of Organic Chemistry 29(10), 1569-1574.
  The conversion of drinking water disinfection process from free chlorine to mono-chloramine reduces the formation of trihalomethanes (THM), but increases the concentration of nitrogenous disinfection by-products (N-DBP), especially five new haloacetamides (HAcAm) including monochloroacetamide (MCAcAm), dichloroacetamide (DCAcAm), trichloroacetamide (TCAcAm), monobromoacetamide (MBAcAm) and dibromoacetamide (DBAcAm). Among these HAcAms, DCAcAm and TCAcAm are normally present in drinking water at a higher concentration. The hydrolysis characteristics with different pH values and chlorination characteristics under different chlorine dosages of HAcAm were studied by combination with linear free-energy relationship (LFER). Based on the hydrolysis and chlorination characteristics of HAcAm, the reaction pathways of hydrolysis and chlorination for HAcAm were also investigated by detection of final product haloacetic acids (HAA). The results indicated that DCAcAm reacted slowly with water in highly acidic condition (pH=4) but was stable at pH 5 within 7 d reaction time. Acid environment can not cause TCAcAm hydrolysis reaction. Obvious hydrolysis reactions of DCAcAm and TCAcAm were discovered in alkaline conditions, which followed the first order reaction. The water sample containing DCAcAm and TCAcAm could be preserved by adjusting pH to 5. The use of chlorine disinfection and increment of chlorine dosage caused the amount of THM and HAA to go up in drinking water, however, it maybe resulted in the decrease of N-DBP Such as HAcAm. Trichloroacetic acid (TCAA) was produced rapidly by TCAcAm hydrolysis at pH 10. For chlorination of TCAcAm, relatively stable Cl-N-TCAcAm was produced from a reaction between TCAcAm and HOCl, then continued to generate TCAA and NHCl(2) at a higher concentration of HOCl.
Chu, W.H. and Gao, N.Y. (2009) Determination of Nitrogenous Disinfection Byproducts Chloroacetamides in Drinking Water by Gas Chromatography-Mass Spectrometry. Chinese Journal of Analytical Chemistry 37(1), 103-106.   A new method for the determination of nitrogenous disinfection byproducts chloroacetamides (CAcAms) in drinking water by gas chromatography mass spectrometry (GC-MS) is described. In the method, the effects of different detecting instrument (GC/ECD and GC/MS) and sample pretreatment were investigated. Direct liquid-liquid extraction-GC/MS method was superior to acid-catalyzed hydrolysis + GC/ECD according to recovery comparison, and extraction effect of ethyl acetate (ETAC) excels methyl tert-butyl ether (MTBE). Good relativeity (r > 0.9995) was obtained when the linear range was 10 - 1000 mu g/L. The recoveries of CAcAms were 82.0% - 111.9%. The relative standard deviations were less than 10.0%. The determination limit is less than 1 mu g/L. The advantage of this method is simple, rapid and sensitive.
Rapp & Reckhow, Dichloroacetamide manuscript, unpublished started ~2001  

 

Halonitromethanes
Citation Notes Abstract

 

Halobenzoquinones
(related info may be found in: DBP Methods, DBP Occurrence and DBP Health pages)
Citation Notes Abstract
Wang, W., Qian, Y.C., Li, J.H., Moe, B., Huang, R.F., Zhang, H.Q., Hrudey, S.E. and Li, X.F. (2014) Analytical and Toxicity Characterization of Halo-hydroxyl-benzoquinones as Stable Halobenzoquinone Disinfection Byproducts in Treated Water. Analytical Chemistry 86(10), 4982-4988. Supplemental Info.
  Exposure to chlorination disinfection byproducts (DBPs) is potentially associated with an increased risk of bladder cancer. Four halobenzoquinones (HBQs) have been detected in treated drinking water and have shown potency in producing reactive oxygen species and inducing damage to cellular DNA and proteins. These HBQs are unstable in drinking water. The fate and behavior of these HBQs in drinking water distribution systems is unclear. Here we report the high-resolution mass spectrometry identification of the transformation products of HBQs as halo-hydroxyl-benzoquinones (OH-HBQs) in water under realistic conditions. To further examine the kinetics of transformation, we developed a solid-phase extraction with ultrahigh-performance liquid chromatography tandem mass spectrometry (SPE-UHPLC-MS/MS) method to determine both the HBQs and OH-HBQs. The method provides reproducible retention times (SD < 0.05 min), limits of detection (LODs) at subnanogram per liter levels, and recoveries of 68%-96%. Using this method, we confirmed that decrease of HBQs correlated with increase of OH-HBQs in both the laboratory experiments and several distribution systems, supporting that OH-HBQs were more stable forms of HBQ DBPs. To understand the toxicological relevance of the OH-HBQs, we studied the in vitro toxicity with CHO-K1 cells and determined the IC50 of HBQs and OH-HBQs ranging from 15.9 to 72.9 mu M. While HBQs are 2-fold more toxic than OH-HBQs, both HBQs and OH-HBQs are substantially more toxic than the regulated DBPs.
Wang, W., Qian, Y.C., Boyd, J.M., Wu, M.H., Hrudey, S.E. and Li, X.F. (2013) Halobenzoquinones in Swimming Pool Waters and Their Formation from Personal Care Products. Environmental Science & Technology 47(7), 3275-3282. Supplemental Info.
  Halobenzoquinones (HBQs) are a class of disinfection byproducts (DBPs) of health relevance. In this study, we aimed to uncover which HBQs are present in swimming pools. To achieve this goal, we developed a new method capable of determining eight HBQs while overcoming matrix effects to achieve reliable quantification. The method provided reproducible and quantitative recovery (67-102%) and detection limits of 0.03-1.2 ng/L for all eight HBQs. Using this new method, we investigated water samples from 10 swimming pools and found 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) in all the pools at concentrations of 19-299 ng/L, which was as much as 100 times higher than its concentration in the input tap water (1-6 ng/L). We also identified 2,3,6-trichloro-(1,4)benzoquinone (TriCBQ), 2,3-dibromo-5,6-dimethyl-(1,4)-benzoquinone (DMDBBQ), and 2,6-dibromo-(1,4)benzoquinone (2,6-DBBQ) in some swimming pools at concentrations of <0.1-11.3, <0.05-0.7, and <0.05-3.9 ng/L, respectively, but not in the input tap water. We examined several factors to determine why HBQ concentrations in pools were much higher than in the input tap water. Higher dissolved organic carbon (DOC), higher doses of chlorine and higher temperatures enhanced the formation of HBQs in the pools. In addition, we conducted laboratory disinfection experiments and discovered that personal care products (PCPs) such as lotions and sunscreens can serve as precursors to form additional HBQs, such as TriCBQ 2,6-dichloro-3-methyl-(1,4)benzoquinone (DCMBQ), and 2,3,5,6-tetrabromo-(1,4)benzoquinone (TetraB-1,4-BQ). These results explained why some HBQs existed in swimming pools but not in the input water. This study presents the first set of occurrence data, identification of new HBQ DBPs, and the factors for their enhanced formation in the swimming pools.
Diemert, S., W. Wang, et al. (2013). "Removal of halo-benzoquinone (emerging disinfection by-product) precursor material from three surface waters using coagulation." Water Research 47(5): 1773-1782.
  Halo-benzoquinones (HBQs) have been previously detected as disinfection by-products in chlorinated drinking water. The current work investigates the link between natural organic matter (NOM) characteristics and HBQ formation during bench-scale coagulation of raw water. Three source waters (Lake Ontario, Otonabee River and Grand River) were subjected to jar testing using alum followed by chlorination. NOM fractions were analyzed via liquid chromatography organic carbon detection (LC-OCD), while HBQs were quantified using liquid chromatography triple quadrupole mass spectrometry. One HBQ, 2,6-dichloro-(1,4) benzoquinone (2,6-DCBQ), was identified in all waters after chlorination, and appeared to decrease with increased applied alum dose. 2,6-DCBQ exhibited high correlations with some humic NOM indicators: humic substance concentration (in Grand and Otonabee River waters only), UV absorbance at 254 nm, UV absorbance at 254 nm of the humic peak, and specific UV absorbance of humics (humic SUVA). With data pooled from the three waters, the biopolymer fraction of NOM was most strongly correlated with 2,6-DCBQ formation (R-2 = 0.78, p < 0.001); this may be due to co-removal of biopolymers with HBQ precursors during coagulation. These results indicate that coagulation processes can be effective for reduction, but not elimination, of HBQ precursors.
Huang, R. F., W. Wang, et al. (2013). "Ultra Pressure Liquid Chromatography-Negative Electrospray Ionization Mass Spectrometry Determination of Twelve Halobenzoquinones at ng/L Levels in Drinking Water." Analytical Chemistry 85(9): 4520-4529.
  We report here the characterization of twelve halobenzoquinones (HBQs) using electrospray ionization (ESI) high resolution quadrupole time-of-flight mass spectrometry. The high resolution negative ESI spectra of the twelve HBQs formed two parent ions, [M + H+ + 2e(-)], and the radical M-center dot. The intensities of these two parent ions are dependent on their chemical structures and on instrumental parameters such as the source temperature and flow rate. The characteristic ions of the HBQs were used to develop an ultra pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. At the UPLC flow rate (400 mu L/min) and under the optimized ESI conditions, eleven HBQs showed the stable and abundant transitions [M + H+ + 2e(-)] -> X- (X- representing Cl-, Br-, or I-), while dibromo-dimethyl-benzoquinone (DBDMBQ) showed only the transition of M-center dot -> Br-. The UPLC efficiently separates all HBQs including some HBQisomers, while the MS/MS offers exquisite limits of detection (LODs) at subng/rnL levels for all HBQs except DBDMBQ, Combined with solid phase extraction (SPE), the method LOD is down to ng/L. The results from analysis of authentic samples demonstrated that the SPE-UPLC-MS/MS method is reliable, fast, and sensitive for the identification and quantification of the twelve HBQs in drinking water.
Qian, Y. C., W. Wang, et al. (2013). "UV-Induced Transformation of Four Halobenzoquinones in Drinking Water." Environmental Science & Technology 47(9): 4426-4433.   Halobenzoquinones (HBQs) are a group of emerging disinfection byproducts (DBPs) found in treated drinking water. Because the use of UV treatment for disinfection is becoming more widespread, it is important to understand how the HBQs may be removed or changed due to UV irradiation. Water samples containing four HBQs, 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dichloro-1,4-benzoquinone (DBBQ), were treated using a modified bench scale collimated beam device, mimicking UV treatment. Water samples before and after UV irradiation were analyzed for the parent compounds and products using a high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method. As much as 90% of HBQs (0.25 nmol L-1) in both pure water and tap water were transformed to other products after UV254 irradiation at 1000 mJ cm(-2). The major products of the four HBQs were identified as 3-hydroxyl-2,6-dichloro-1,4-benzoquinone (OH-DCBQ). from DCBQ 5-hydroxyl-2,6-dichloro-3-methyl-1,4-benzoquinone (OH-DC/VIBQ) from DCMBQ, 5-hydroxyl-2,3,6-trichloro-1,4-benzoquinone (OH-TCBQ) from TCBQ and 3-hydroxyl-2,6-dibromo-1,4-benzoquinone (OH-DBBQ) from DBBQ These four OH-HBQs were further modified to monohalogenated benzoquinones when the UV dose was higher than 200 mJ cm(-2). These results suggested possible pathways of UV induced transformation of HBQs to other compounds. Under the UV dose commonly used in water treatment plants, it is likely that HBQs are partially converted to other halo-DBPs. The occurrence and toxicity of these mixed DBPs warrant further investigation to understand whether they pose a health risk
Du, H.Y., Li, J.H., Moe, B., McGuigan, C.F., Shen, S.W. and Li, X.F. (2013) Cytotoxicity and Oxidative Damage Induced by Halobenzoquinones to T24 Bladder Cancer Cells. Environmental Science & Technology 47(6), 2823-2830.
  Four halobenzoquinones (HBQs), 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), and 2,6-dibromobenzoquinone (DBBQ), have been recently confirmed as disinfection byproducts (DBPs) in drinking water; however, their toxicological information is scarce. Here, we report that HBQs are cytotoxic to T24 bladder cancer cells and that the IC50 values are 95 mu M for DCBQ, 110 mu M for DCMBQ, 151 mu M for TCBQ, and 142 mu M for DBBQ, after a 24-h exposure. The antioxidant N-acetyl-L-cysteine (NAC) significantly reduces the cytotoxicity induced by the four HBQs, supporting the hypothesis that oxidative stress contributes to the cytotoxicity of HBQs. To further explore the oxidative mechanisms of cytotoxicity, we examined HBQ-induced production of reactive oxygen species (ROS) in T24 cells, and measured 8-hydroxydeoxyguanosine (8-OHdG), protein carbonyls, and malondialdehyde (MDA) adducts of proteins, markers of oxidative damage to DNA, proteins, and lipids, respectively. All four HBQs generated intracellular ROS in T24 cells in a concentration-dependent manner. HBQs also produced 8-OHdG in genomic DNA of T24 cells, with the highest levels of 8-OHdG induced by DCMBQ, Protein carbonylation was significantly increased in T24 cells that were incubated with each of the four HBQs for 24 h. However, MDA adduct formation, a marker of lipid peroxidation, was not affected by any of the four HBQs tested. These results suggest that the ROS-induced oxidative damage to DNA and protein carbonylation are involved in the observed toxicity of HBQs in T24 cells.
Zhao, Y. L., J. Anichina, et al. (2012). "Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection" Water Research 46(14): 4351-4360.
data from 7 plants, 5 using chloramines and 2 using free chlorine Consumption of chlorinated drinking water has shown somewhat consistent association with increased risk of bladder cancer in a series of epidemiological studies, but plausible causative agents have not been identified. Halobenzoquinones (HBQs) have been recently predicted as putative disinfection byproducts (DBPs) that might be of toxicological relevance. This study reports the occurrence frequencies and concentrations of HBQs in plant effluents from nine drinking water treatment plants in the USA and Canada, where four common disinfection methods, chlorination, chloramination, chlorination with chloramination, and ozonation with chloramination, are used. In total, 16 water samples were collected and analyzed for eight HBQs: 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (2,6-DC-3-MBQ), 2,3,6-trichloro-1,4-benzoquinone (2,3,6-TriCBQ), 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), 2,3-dibromo-5,6-dimethyl-1,4-benzoquinone (2,3-DB-5,6-DM-BQ), tetrabromo-1,4-benzoquinone (TetraB-1,4-BQ), and tetrabromo-1,2-benzoquinone (TetraB-1,2-BQ). Of these, 2,6-DCBQ 2,6-DBBQ 2,6-DC-3-MBQ and 2,3,6-TriCBQ were detected in 16, 11, 6, and 3 of the 16 samples with the method detection limit (DL) of 1.0, 0.5, 0.9 and 1.5 ng/L, respectively, using a solid phase extraction and high performance liquid chromatography -tandem mass spectrometry method. The concentrations were in the ranges of 4.5 -274.5 ng/L for 2,6-DCBQ below DL to 37.9 ng/L for 2,6-DBBQ below DL to 6.5 ng/L for 2,6-DC-3-MBQ and below DL to 9.1 ng/L for 2,3,6-TriCBQ. These authentic samples show DCBQ and DBBQ as the most abundant and frequently detectable HBQs. In addition, laboratory controlled experiments were performed to examine the formation of HBQs and their subsequent stability toward hydrolysis when the disinfectants, chlorine, chloramine, or ozone followed by chloramines, reacted with phenol (a known precursor) under various conditions. The controlled reactions demonstrate that chlorination produces the highest amounts of DCBQ while pre-ozonation increases the formation of DBBQ in the presence of bromide. At pH < 6.8, 2,6-DCBQ was observed to be stable, but it was easily hydrolyzed to form mostly 3-hydroxyl-2,6-DCBQ at pH 7.6 in drinking water.
Anichina, J., Y.L. Zhao, S.E. Hrudey, A. Schreiber, and X.F. Li. 2011. Electrospray Ionization Tandem Mass Spectrometry Analysis of the Reactivity of Structurally Related Bromo-methyl-benzoquinones toward Oligonucleotides. Analytical Chemistry 83:8145-8151.
  We report the use of electrospray ionization tandem mass spectrometry (ESI-MS/MS) as a tool for rapid screening of structurally related chemicals toward oligonucleotides using the binding of five bromobenzoquinones with single-stranded (ss) and double-stranded (ds) oligonucleotides (ODNs) as a model. We found that these compounds interact differentially with oligonucleotides depending on the extent of their bromination and methylation. Three dibromobenzoquinones, 2,6-dibromo-14-benzoquinone (2,6-DBBQ), 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), and 2,5-dimethyl-3,6-dibromo-1,4-benzoquinone (DMDBBQ), bound to ssODN to form 1:1 adducts, and the binding constant of DMDBBQ bound to ssODN Was 100-fold lower than those of 2,6-DBBQ and 2,5-DBBQ to ssODN, indicating that methyl groups hindered interactions of the bromoquinones with ODNs. Collision-induced dissociation (CID) of the 1:1 and 1:2 adducts of ODN with 2,6-DBBQ and 2,5-DBBQ demonstrated neutral loss of DBBQ and charge separations. Incubation of two tetrabromobenzo-quinones (TBBQ), 2,3,5,6-tetrabromo-1,4-benzoquinone and 3,4,5,6-tetrabromo-1,2-benzoquinone, with the same ODNs did not form any adducts of TBBQ with ssODN or dsODN; however, bromide ODNs were detected. Fragmentation of the bromide ODN adducts showed loss of the HBr molecule, supporting the presence of bromide on ODNs. High-resolution MS and MS/MS analysis of the mixtures of dinucleotides (AA, GG, CC, and TT) and TBBQ confirmed the presence of bromide on the dinucleotides, supporting the transfer of bromide to ODNs through interaction with TBBQ This study presents evidence of differential interactions of structurally related bromo and methyl-benzoquinones with oligonucleotides and demonstrates a potential application of ESI-MS/MS analysis of chemical interactions with ODN for rapid screening of the reactivity of other structurally related environmental contaminants toward DNA.
Lai, Y.Q., M.H. Lu, S.H. Lin, H.Z. Wu, and Z.W. Cai. 2011. Electrospray ionization tandem mass spectrometric characterization of DNA adducts formed by bromobenzoquinones. Rapid Communications in Mass Spectrometry 25:2943-2950.
  Bromobenzoquinones (BBQs) represent a class of reactive metabolites of various aromatic contaminants with bromine-containing substituents, including bromobenzene, bromophenols, polybrominated diphenyl ethers (PBDEs). Recently, 2,6-dibromobenzoquinone also has been detected directly from drinking water. The alternation of the genome caused by covalent binding of chemicals or their metabolites to DNA provides a viable mechanism for carcinogenicity. In the present study, electrospray ionization coupled with ion trap mass spectrometry (ITMS), triple quadrupole MS or quadrupole time-of-flight MS was applied for the analysis of DNA adducts formed by BBQs. The study demonstrated 2-monobromobenzoquinone and 2,6-dibromobenzoquinone could covalently bind to deoxyguanosine (dG) and DNA in vitro. The chemical structures of the DNA adducts were confirmed by accurate mass values, collision-induced fragmentation tandem mass spectra as well as isotopic patterns. Generally, the reaction mechanism for the DNA adduction involved Michael addition between the electron-deficient carbon from the quinone and the nucleophilic exocyclic nitrogen from the dG followed by reductive cyclization with loss of a small molecule such as H2O, or HBrO. It was of particular interest to note that some adducts were generated from the reaction of one dG molecule with two BBQ molecules. The obtained results provided new information for assessing the potential cancer risk associated with bromobenzene, bromophenols, PBDEs and BBQs.
Anichina, J., Zhao, Y.L., Hrudey, S.E., Le, X.C. and Li, X.F. (2010) Electrospray Ionization Mass Spectrometry Characterization of Interactions of Newly Identified Water Disinfection Byproducts Halobenzoquinones with Oligodeoxynucleotides. Environmental Science & Technology 44(24), 9557-9563.   Four halobenzoquinones, 2,6-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoquinone, and 2,3,6-trichloro-1,4-benzoquinone, were recently identified as drinking water disinfection byproducts. Understanding their interactions with biomolecules could provide useful insights into their potential toxic effects. We report here electrospray ionization mass spectrometry characterization of the interactions between these new halobenzoquinone disinfection byproducts and oligodeoxynucleotides. The study demonstrates that 2,6-dibromo-1,4-benzoquinone exhibits much stronger binding to single- and double-stranded oligodeoxynucleotides than chlorobenzoquinones. The binding affinity of 2,6-dibromo-1,4-benzoquinone to oligodeoxynucleotides is similar to that of ethidium bromide, a well-known intercalator and carcinogen. Tandem mass spectrometry characterization confirms the formation of 1:1 and 2:1 complexes of 2,6-dibromo-1,4-benzoquinone binding to oligodeoxynucleotides. Collision-induced dissociation analysis of these adducts demonstrates neutral loss and charge separation, suggesting that 2,6-dibromo-1,4-benzoquinone binds to oligodeoxynucleotides through partial intercalation and H-bonding modes. The three chlorobezoquinones also form 1:1 adducts with the oligodemmucleotides, but their binding to the oligodeoxynucleotides was much weaker compared to that of 2,6-dibromo-1,4-benzoquinone. The relative binding affinity of the studied disinfection byproducts to oligodeoxynucleotides is in the order of 2,6-dibromo-1,4-benzoquinone>>2,6-dichloro-1,4-benzoquinone > 2,6-dichloro-3methyl-1,4-benzoquinone similar to 2,3,6-trichloro-1,4-benzoquinone, indicating potential structural effects on the interactions of halobenzoquinones with oligodeoxynucleotides.
Qin, F., Zhao, Y.Y., Zhao, Y.L., Boyd, J.M., Zhou, W.J. and Li, X.F. (2010) A Toxic Disinfection By-product, 2,6-Dichloro-1,4-benzoquinone, Identified in Drinking Water. Angewandte Chemie-International Edition 49(4), 790-792. Supporting Info
   
Zhao, Y.L., Qin, F., Boyd, J.M., Anichina, J. and Li, X.F. (2010) Characterization and Determination of Chloro- and Bromo-Benzoquinones as New Chlorination Disinfection Byproducts in Drinking Water. Analytical Chemistry 82(11), 4599-4605.   We report the characterization and determination of 2,6-dichloro-1,4-benzoquinone and three new disinfection byproducts (DBPs): 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, and 2,6-dibromo-1,4-benzoquinone. These haloquinones are suspected bladder carcinogens and are likely produced during drinking water disinfection treatment. However, detection of these haloquinones is challenging, and consequently, they have not been characterized as DBPs until recently. We have developed an electrospray ionization tandem mass spectrometry technique based on our observation of unique ionization processes. These chloro- and bromo-quinones were ionized through a reduction step to form [M + H](-) under negative electrospray ionization. Tandem mass spectra and accurate mass measurements of these compounds showed major product ions, [M + H - HX](-), [M + H - HX - CO](-), [M + H - CO](-), and/or X- (where X represents Cl or Br). The addition of 0.25% formic acid to water samples was found to effectively stabilize the haloquinones in water and to improve the ionization for analysis. These improvements were rationalized from the estimates of pK(a) values (5.8-6.3) of these haloquinones. The method of tandem mass spectrometry detection, combined with sample preservation, solid phase extraction, and liquid chromatography separation, enabled the detection of haloquinones in chlorinated water samples collected from a drinking water treatment plant. The four haloquinones were detected only in drinking water after chlorination treatment, with concentrations ranging from 0.5 to 165 ng/L, but were not detectable in the untreated water. This method will be useful for future studies of occurrence, formation pathways, toxicity, and control of these new halogenated DBPs.
Bull, R., Reckhow, D., Rotello, V., Bull, O. and Kim, J. (2006) Use of Toxicological and Chemical Models to Prioritize DBP Research. AWWARF report [CN111] first proposed HBQs in drinking waters  

 

Single Studies in VariousTreatment Scenarios
Citation Notes Abstract

   

 

Large DBP Studies with some Degradation Data
Citation Notes Abstract