Manifold Masking

- Emulate criteria used in linear/nonlinear embedding algorithms (Isomap, NuMax) to obtain structure-preserving masking patterns for manifold-modeled data.
- Seek masking index set $\mathcal{O} = \{\omega_1, \ldots, \omega_m\}$ that is a subset of the dimensions $|d| = \{1, 2, \ldots, d\}$ of $\mathbf{x} \subset \mathbb{R}^d$.
- Define masking linear operator $\psi: \mathbf{x} \mapsto (\omega_i)_{i \in \mathcal{O}}$ corresponding to masking index set \mathcal{O}.

Manifold Learning and Linear Dimensionality Reduction:

- An r-dimensional manifold $\mathcal{M} \subset \mathbb{R}^d$ is a set of data points $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n\} \subset \mathbb{R}^d$ that have been generated according to an r-dimensional parametric function.
- Goal: Given high-dimensional data set \mathcal{X}, find underlying parameterization of the manifold $\mathcal{M} \subset \mathbb{R}^d$.

- **Dimensionality reduction**: embed data \mathcal{X} to low-dimensional space \mathbb{R}^r ($m \ll d$) so that local geometry of \mathcal{M} is preserved, i.e., distances in \mathbb{R}^r correspond to parameter differences in \mathbb{R}^d.
- **Linear dimensionality reduction**: use a matrix projection $\Phi \in \mathbb{R}^{d \times r}$, e.g., principal component analysis (PCA), multidimensional scaling (MDS).
- PCA/MDS fail to preserve geometric structure of a nonlinear manifold.

Optimization-Based Mask Selection:

- Minimize distortion incurred by secants with neighboring k data points:
 $$S_k = \left\{ \frac{\mathbf{x}_i - \mathbf{x}_j}{|\mathbf{x}_i - \mathbf{x}_j|_2} : i \in [d], j \in \mathcal{N}_k(\mathbf{x}_i) \right\} \subseteq \mathcal{S}.$$
 - Expectation of masked secant norms over masking index sets \mathcal{O} drawn uniformly at random is $\mathbb{E} [\| \mathbf{w}_{\mathcal{O}} \|_2] = \frac{d}{2}$.

- Secants S_k inevitably subject to compaction factor of $\sqrt{\frac{d}{2}}$ in expectation by masking operator ψ.
- Seek masking ψ such that for all $\mathbf{a} \in S_k$, the squared norm of masked secants $\| \mathbf{w}_{\mathcal{O}} \|_2$ is as close as possible.
- We have $\| \mathbf{w}_{\mathcal{O}} \|_2 = \sum_{j \in \mathcal{O}} \mathbf{a}_j \mathbf{z}_j = \sum_{j \in \mathcal{O}} \mathbf{a}_j (2 - z_j^2) - \mathbf{a}_0^2 z_j^2$, where $\mathbf{a}_0^2 = \mathbf{a}_j$ entrywise and z is the d-dimensional indicator vector for index set \mathcal{O}, i.e., $z_\mathcal{O} = 1$ if $j \in \mathcal{O}$, 0 otherwise.
- Squared secants matrix $\mathbf{A} = \{S_k \times d\}$ matrix defined by
 $$\mathbf{A} = [\mathbf{a}_1 \mathbf{a}_2 \cdots] = [\mathbf{a}_1 \mathbf{a}_2^2 \cdots]^T.$$
- Find optimal masking pattern by casting the following integer program:
 $$z^* = \arg \min \mathbb{E} [\| \mathbf{w}_{\mathcal{O}} \|_2] = \mathbb{E} [\| \mathbf{w}_{\mathcal{O}} \|_2] = \mathbb{E} [\| \mathbf{w}_{\mathcal{O}} \|_2],$$
 subject to $z^* \leq m$, $z \in \{0, 1\}^d$, where $\mathbf{1}_m$ denotes d-dimensional all-ones vector.
- Equality constraint $\mathbf{1}_m z = m$: only m dimensions are to be retained in the masking process.
- Integer program (1) is computationally intractable (run only for 24 hours in experiments).

Manifold-Aware Pixel Selection (MAPS)

- **Inputs**: normalized squared secants matrix \mathbf{A}, number of dimensions m.
- **Outputs**: masking index set \mathcal{O}.

Initialize: $\mathcal{O} = \{\}$

- **for** $i = 1$ to m **do**
 - $\mathbf{A}_i \leftarrow \mathbf{A}_i + \mathbf{1}_{[1]}$ (compute current masked secant square norms)
 - $\omega_i \leftarrow \arg \min_{\omega_i} \left\| \mathbf{A}_i + \mathbf{A}_i - \mathbf{A}_i \parallel \omega_i \parallel_2 \right\|_2$ (minimize aggregate difference with $\mathbb{E} [\| \mathbf{w}_{\mathcal{O}} \|_2]$)
 - $\mathcal{O} \leftarrow \mathcal{O} \cup \omega_i$ (add selected dimension to the masking index set)

- Heuristic greedy algorithm that can find an approximate solution for (1) in drastically reduced time (seconds/minutes).
- MAPS iteratively selects elements of the masking index set \mathcal{O} using the squared secants matrix \mathbf{A}. At iteration i of the algorithm, MAPS finds a new dimension that, when added to the existing dimensions in \mathcal{O}, causes the squared norm of the masked secants to match the expected value of $\frac{d}{2}$ as closely as possible on average.
- Computational complexity of MAPS is $O(m^d |S_k|) = O(mkn)$.

Simulation Results

- Compare (1) and MAPS with two baseline methods: random masking (select m out of d data dimensions uniformly at random) and principal coordinate analysis (PCoA) (select indices of m dimensions with the highest variance across the dataset).
- Eyeglasses dataset: eye-tracking image captures via computational eyeglasses prototype that uses pixel-level imaging sensor array of [3].
- MAPS significantly outperforms random sampling and PCoA.
- For sufficiently large values of m, the performance of MAPS approaches or matches that of nonlinear linear embedding algorithms on full images.

Acknowledgments and References

This work was supported by NSF Grant IIS-1239341.