1. Determine if these systems, with input $x(t)$ and output $y(t)$, are:
 (i) linear and (ii) time-invariant (30 points each)

(a) $y(t) = x(t-1)$
 Linear: Yes
 Time Invariant: Yes

(b) $y(t) = \int_{-\infty}^{t+1} x(\tau)u(\tau)\,d\tau$
 Linear: Yes
 Time Invariant: No

2. Find the power of the following functions (20 points each)

(a) $x(t)$
 $P = 1$

(b) $x(t)$
 $P = 1/3$
1. Determine if these systems, with input \(x(t) \) and output \(y(t) \), are:
 (i) linear and (ii) time-invariant (30 points each)

(a) \(y(t) = x(t+1) \)
 Linear: Yes
 Time Invariant: Yes

(b) \(y(t) = \int_{-\infty}^{t} x(\tau)^2 u(\tau) \, d\tau \)
 Linear: No
 Time Invariant: No

2. Find the power of the following functions (20 points each)

(a) \(P = 4 \)

(b) \(P = 3 \)
1. Determine if these systems, with input $x(t)$ and output $y(t)$, are:
 (i) linear and (ii) time-invariant (30 points each)

(a) $y(t) = x(t+3)$
 Linear: Yes
 Time Invariant: Yes

(b) $y(t) = \int_{-\infty}^{t} x(\tau)^3 u(\tau) d\tau$
 Linear: No
 Time Invariant: No

2. Find the power of the following functions (20 points each)

(a) $P = 4/3$

(b) $P = 9$
1. Determine if these systems, with input $x(t)$ and output $y(t)$, are:
 (i) linear and (ii) time-invariant (30 points each)

 (a) $y(t) = x(t+3)$

 (b) $y(t) = \int_{-\infty}^{t} x(\tau)^3 u(\tau) d\tau$

2. Find the power of the following functions (20 points each)

 (a)

 (b)