NetBench: A Benchmarking Suite for Network Processors

ECE 697J
November 14th, 2002
Applications

- Different “levels” of applications:
 - **Micro-level:**
 - “Close” to link, components of higher levels
 - Apps: CRC checksum, RTR table lookup
 - **IP-level:**
 - IP packet processing
 - Apps: IPv4 Routing, DRR scheduling, NAT, firewall
 - **Application-level:**
 - More complex processing
 - Apps: URL-based switching, Diffie-Hellman, MD5
NetBench Characteristics

- Instruction-level parallelism:
 - IPC of 1.38 to 1.97

- Instruction mix:
 - Add ~40-50%
 - Load ~20-30%
 - Arithmetic ~10%
 - Others < 10%

- Cache miss rates:
 - Only one measurement: 4kB i-cache, 4kB d-cache, 128kB L2
 - i-cache miss rate < 0.3%
 - d-cache miss rate < 2.3%
IXP1200 Implementation

- Implementation on IXP1200:
 - IPv4 routing, MD5, CRC checksum
- Throughput:
 - IPv4: 2.2 Gbps on IXP, 1.2 on Pentium
 - MD5: 0.3 Gbps on IXP, 0.2 on Pentium
 - CRC: 0.3 Gbps on IXP, 0.2 on Pentium
- What conclusions can be drawn from this result?
Other NP Benchmarks

- NP Forum
 - Consortium of NP vendors
 - Has recently standardized IP forwarding
 - MPLS etc. next

- EEMBC
 - Embedded processor consortium
 - Has a few networking-related micro-benchmarks

- Question:
 - What are good benchmarking metrics?
 - How to incorporate networking and processing aspects?
NP Benchmark Summary

• Difficult to define good benchmark
 – Many levels to processing
 – Many application domains
 – Has to be general enough to be “standard”

• Many measurements
 – What do they mean?
 – How can those numbers be used for NP design?
Topics for Remaining Classes

- Performance modeling for design space exploration
- Simulation of network processors
- Scheduling of processing tasks
- Look at more commercial products
- What should we focus on?