Active Pipes:
Service Composition for Programmable Networks

ECE 697J
October 29th, 2002
How to Program Active Network?

- Active network nodes provide programmable interfaces and active applications
- End-user / system administrator should be able to use active network easily
- Traditional network: socket (choice: UDP or TCP)
- Active network: also processing ⇒ lots of choices
- Challenge: How can user specify active network behavior (= “service composition”)?
- Idea: Use “pipe abstraction” from UNIX (= “active pipe”)
Network OS

- Application developers should not deal directly with all details
 - hide network specific details and topology from applications
 - uniform programming model should abstract from network heterogeneity
- Need something like “Network OS”, not just Node OS
- Automate configuration of application sessions
 - allocate network resources efficiently
 - provide protection and performance isolation
 - facilitate policy-driven application configuration
- Simplify use of advanced network applications
 - hide network topology and implementation details from users
 - minimize configuration requirements on end-users
Application-Centric Networking

open session (type, args)
determine best configuration
get session spec. & plugin code
add destination host

Network OS
code servers
Requirements

- **Programming abstraction**
 - Express processing requirements of applications

- **Session configuration algorithm**
 - Quickly map application requirements onto available physical network resources

- **Distribution of information**
 - Use routing protocols to distribute the availability and usage of network resources

- **Signaling mechanisms**
 - Explicitly route and deploy processing functions
Active Pipe as Programming Abstraction

• Compose services out of reusable building blocks analogous to UNIX pipes:
 – cat | sort | a2ps | lp

• Active pipe describes sequence of processing functions to be executed
 – In networking context functions distributed on various nodes
 – Constraints define nodes suitable for processing

Source

address = 192.1.1.14

First Processing Step

address \subseteq 192.1.2/24
processing units \geq 10

Second Processing Step

address \subseteq 192.1.3/24
processing units \geq 20

Destination

address = 192.1.4.1
Mapping Active Pipe to Physical Network

- Need to select processing sites and end-to-end path
 - Mapping Algorithm

Active Pipe Description

Mapping onto physical network

Physical Network

candidate sites for first step

candidate sites for second step

link costs

processing costs
Mapping Algorithm

- Constraint-based optimization problems with more than one cost metric are known to be intractable.
- NP-complete algorithms do not scale for large networks.
- Active Pipes approach:
 - One cost metric for both link and processing costs.
 - Constraint-based routing problem can be mapped to shortest-path problem and solved with Dijkstra algorithm.
Constraint-based Routing: Single Processing Site

- Layered graph method:
 - build 2 layer graph:
 - processing nodes become inter-layer edges
 - find shortest path in graph
 - project two layers onto single layer, optimal processing where path *crosses layers*
 - extends nicely to k processing steps
Layering Model for Two Processing Sites

- Candidate sites for first step
- Candidate sites for second step

Layered network graph

Optimal "path"
Implementation Requirements

• Requirements for mapping algorithm
 – Topology information to build network graph
 – Location and costs of processing sites
 – Network attributes to express constraints

• Idea:
 – Existing routing protocols already have some topology information (link state database)
 – Routing protocols can be extended to include information about processing sites and attributes
 – Use of OSPF Opaque LSA options (RFC 2370) to carry transparent information
Node Architecture

Routing Protocols
- OSPF
- BGP
- RIP

Signaling Protocols
- RSVP
- MPLS

Path Routing
- 8-Port ATM
- Gigabit Switch

Path Signaling
- Active Networking

Session Setup Manager

Control Processor

IP Classifier

Packet Scheduler

Plugin 1

Plugin 2
open session (type, args)

Session Setup

Determine required plugins

Application

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Routing Protocols

signaling plugins

pin path and install plugins on other nodes

Application

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor

Session Setup Manager

Path Routing

Path Signaling

Routing Protocols

OSPF

Signaling Protocols

Active Networking

RSVP

MPLS

Control Processor
Conclusions

- Need for automated mechanisms to configure application sessions
 - free application developers from low level concerns
 - enable effective resource allocation
 - to give network administrators control over network usage
 - simplify use of advanced applications by end users
- Active pipe paradigm for specifying processing and transmission requirements
- Layered network graph for session mapping
- Goal is a “Distributed Network OS”