Envisaging an Active Network Architecture

Presented by:

Jayakrishnan K Nair
The Vision behind Active Nets

- The purport of Traditional Networks is merely to transport bits from source to destination.
- The data thus transported is opaque to the network.
- Since there is no semantic processing of data, the only computations performed are from a transport perspective, like CRC & checksum.

On the other hand...

- Active Networks allow users to inject customized programs into nodes of the network.
- Thus custom semantic processing on data is performed at the network during transit and thus data is modified into a more readily operable form.
A Conceived Modus Operandi

- Packets can be replaced with active Capsules
- Capsules have code embedded in them so that they are executed at each node they traverse
- These mini-programs incorporate within them the user data also, a la in PostScript code
- Each node may have predefined program methods that may be dynamically invoked by the capsules

Source sends capsules with uncompressed data embedded within compressor modules; Destination receives compressed data
Advantages of Active Networks

- Unlike in the conventional networks, the nodes are not dormant to data processing, and hence their latent computational potential is utilized owing to a much better service throughput at destination.

- Portability of services across domains using highly adaptive protocols is maximized, yielding richer interactions and hence obviating the necessity for the exchange of fixed data formats.

- Strategic juxtaposing of fine grained application-specific functions on the nodal graph is achievable.
Advantages of Active Networks

- Adds versatility and scalability to the system to enhance scope for new services, as the bottleneck of vendor-driven standardization is assuaged.
- Provides a sagacious and clairvoyant next step to the emanation of cutting-edge active technologies that support encapsulation, transfer and safe execution of program fragments.
- Provides a viable and more beneficial alternative to ad hoc contrivances of firewalls, Web proxies, mobile proxies, multicast routers, video gateways et al, which need functionally active nodes.
Applications of Interest

- Mobile Code need to travel from client to server for agent technologies, and in vice-versa for Web applets, in the traditional framework.
- Active Networks eliminate this dichotomy by allowing applications to dispatch computation en route to the destination.
- In this perspective, several application designers come to the fore, such as for Firewalls, Web Proxies, Mobile/Nomadic Gateways etc.
Firewalls

- Firewalls are security applications that run on interfaces between networks.
- They implement filters based on various fields in the packets like source/destination IP, service etc.
- Using Active nets, the automation of application authentication is possible by injecting appropriate filter modules that set the permissions.
Web Proxies

- Dynamic updating of WWW pages in the web caches has been a challenging research topic.
- Active Nets yield a promising solution.
- Web proxy schemes can support active caches that dynamically execute programs that generate web pages on the fly, thus minimizing web accesses.
Mobile/ Nomadic Computing

- The bandwidth of a system’s connection to the network could vary heavily depending on the changes in the type of connection (T1/ Dial-up etc)
- A nomadic router is able to adapt to this with the view to optimize performance from the available bandwidth, by varying cache size etc.
- Nomadic gateways are similar – they are located between networks of highly different bandwidths, like between wired and wireless networks
- Active networking can ameliorate the situation significantly, by using application-specific services such as file caching, image transcoding etc.
Myriad Novel Vistas

- Sophisticated Network-based services currently face bandwidth constrains, keeping them from realizing their true potential.
- Active Network is the closest to a panacea we can get, as fusing data within the network can reduce bandwidth requirements.
- Development of more flexible multi-point communication strategies than the current IP multicast service can be supported.
- Enhanced Video Conferencing and Composite Image Viewing from distributed sensors are two examples.
An Implementation Perspective

- One intuitively suggestive architectural design perspective is the usage of programmable switches.
- Here, each node can be programmed to operate on the incoming packets after header removal.
- The header of the packet will identifies which among the available modules is to be run.
- In the case that there is no program associated with a particular header, the node passes the packet on just like a traditional passive node.
- Stringent operator authentication is required for this discrete approach, to obviate malevolent tampering.
An Integrated Design Approach

- An extreme case would be to have every message being embedded in a program capsule.
How it works

- When a capsule arrives at an active node, it first identifies the capsule boundaries using framing mechanisms in the link layer.
- It then dispatches the contents to a transient execution environment.
- The embedded code in the capsule contains primitive instructions, and can invoke external methods to access the resources in the router.
- The accessibility to such external objects, like routing tables, is determined using the concepts of Foundation Components, Active Storage and Extensibility.
Foundation Components

- These components are inherently present in each node, to implement external methods that provide controlled access to the router’s resources.
- Some of them reflect the API of the node’s run-time environment to the embedded application.
- Others provide a built-in class hierarchy for an access model to resources.
Active Storage

- This is a method to preserve state information so that coherent packets can save computation by making use of the saved states from predecessors.
- Preplanned congregation of capsules at a node for a joint computation on a particular node, can be achieved by each capsule setting state information.
- Until all required capsules arrive, the earlier capsules would lie dormant.
- Finally when the state in the active storage changes to signal end of hibernation for dormant capsules, they begin to process in unison.
Extensibility

- This is an interesting approach for building a large programming environment block by block.
- It is impractical to have large cumbersome code to be squeezed into individual capsules.
- However, it is possible to break the program in an object-oriented perspective.
- Thus, uniquely named classes and methods can be implanted in to the nodes by individual capsules as they traverse through them.
- After all the building blocks have arrived, the node will have the environment ready for execution.
Mobility using Capsule Programs

- Mobility and Portability issues stem from the need for versatility for the capsules to be transferred and executed across a range of platforms.
- Expressing the source code in high-level language enables it to be interpreted at the nodes.
- Another method is to adopt a platform-independent intermediate representation such as a byte-coded virtual instruction set.
- A less elegant method is to have each packet carrying multiple binary machine codes corresponding to each of the traversable platforms.
Safe and Efficient Execution

- A critical design consideration is to have safety and performance aspects apposite to each other.
- Safety stems from the need to restrict accessibility to critical resources, in order to obviate catastrophe.
- Efficiency is the requirement to meet the safety consideration with minimal performance overhead.
- Active Technologies can be leveraged to provide safe and efficient execution by restricting the operand scope and available primitive instructions.
Active Technologies to the fore

- **Source Code** – Languages such as Safe-TCL provide namespace closure, and prevents programs from straying beyond their execution environment.

- **Intermediate Code** – An intermediate instruction set as used by Java inherently precludes the need for the interpreter to check certain cases, as in operand validation, thereby improving efficiency.

- **Binary Code** – Directly executable machine code costs in mobility, but gives high performance gain.

- The instruction set and address-space must be restricted in the last case, to account for generic processing by any conforming hardware.
More on Active Technologies

- The safety aspect of using such direct binary code can be achieved by using a trust-worthy compiler that always confines program variables to a closed environment, which is verified at the node.

- A set of smart sandboxed techniques, such as restricted address arithmetic and run-time support can work in tandem to achieve the same goal.

- Automatic regeneration or modification of source-code using on-the-fly compilation, along with sandboxing, can further make the safety-efficiency balance more apposite.
Interoperability Aspect

- The active network will have to share resources with the administrative domains, and hence the need for efficient interoperability is paramount.
- A minimalistic resource model is sufficient for most capsules.
- Transient bandwidth, Processing Capacity, Transient Storage and Active Storage are some of the most relevant physical resource indices needed to be abstracted into the capsules.
Repercussion on OSI model

The active network model points out the need to address the lacunae of the layered reference model:

- Upper-layer services are possible only on an end-to-end basis, and is opaque to the network
- Services at or below network layer are application-independent
- Tunneling of networks causing recursion is overlooked
Conclusion

- By implementing processing capabilities in networks, which has hitherto been only passive forwarding medium, it is possible to elegantly leverage current technologies to derive higher performance and QoS at low overheads.

- The “Chicken and Egg” problem raises here as the vendors wait for this late technology to become the “de facto standard” whereas that is possible only if large-scale upgrading is done by the vendors!

- However, the scope opened by active networks is too enticing to be sidelined, making the synergetic development of a research ActiveNet expedient.
Thank You Very Much !