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Abstract—Programmable devices containing lookup tables
(LUTs) and programmable logic arrays (PLAs) provide a het-
erogeneous target platform for user designs. Present commercial
tools, which target these hybrid devices, require hand partitioning
of user designs to isolate logic for each type of logic resource. In
this paper, an automated technology mapping tool,hybridmap,
is presented that identifies design logic partitions as suitable for
either LUT or PLA implementation. A breadth-first search-based
subgraph extraction and evaluation heuristic is integrated with
product term (Pterm) count, area, and delay estimators to guide
the technology mapping process.Hybridmap can be adapted to
target a variety of PLA architectures and can accommodate
user-provided timing constraints. It is shown that when timing
constrained,hybridmapreduces LUT consumption for Apex20KE
devices (Altera Corporation 1999) by 8% and when unconstrained
by 14% by migrating logic from LUTs to Pterm structures.
Hybridmap is shown to outperform previous mapping approaches
(Lin and Wilton 2001) for Apex20KE-type devices by up to 22%.

Index Terms—Hybrid field-programmable gate array (FPGA),
lookup table (LUT), programmable logic arrays (PLAs), tech-
nology mapping.

I. INTRODUCTION

RECENT innovations in field-programmable gate array
(FPGA) architecture have led to the development

of hybrid FPGA families [3] that combine diverse sets of
logic resources on the same silicon substrate. To support
wide-fanin, low logic-density subcircuits, such as finite-state
machines, some contemporary FPGA architectures [4] contain
SRAM-configurable programmable logic arrays (PLAs). Un-
like fine-grained lookup tables (LUTs), PLAs can implement
sets of logic functions with minimal interconnect, the most
area-expensive resource in contemporary FPGAs [3]. For
product term (Pterm)-based PLA structures, this area efficiency
often comes at the cost of increased minimum delay for PLA
paths versus corresponding LUT paths, requiring resource
balance. When coupled with fine-grained LUTs, PLAs provide
an integrated programmable resource that can be used in many
digital system designs to support noncritical-path control logic
for LUT-based datapaths. Current industry technology mapping
tools [5], [6] do not provide automated techniques to partition
user designs across heterogeneous logic resources, limiting the
usefulness of hybrid devices. This work presents an automated
technology mapping tool,hybridmap, that automatically parti-
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tions user designs to a collection of LUTs and PLAs so that an
area-optimized solution is achieved. This involves packing as
much logic as possible into available PLAs, thus minimizing
required LUTs.

As shown in Fig. 1, contemporary FPGA architectures gen-
erally contain highly optimized blocks which include both logic
and routing resources. These blocks are replicated in a vendor-
specific pattern throughout the device. A coarse-grained struc-
ture, such as an embedded PLA, is allocated one perfine-
grained LUTs. Hierarchical routing resources provide required
connectivity among nonadjacent device structures.

Our new hybridmap tool automates PLA logic extraction
and subsequent PLA and LUT mapping. Since FPGA devices
generally contain proportionally more LUT than PLA re-
sources, design subgraphs, initially targeted at LUTs, must be
retargeted at PLAs. As a result, subgraph resource estimation
forms a significant part of our approach. The developed system
integrates a series of new graph search heuristics with novel
cost functions to identify subgraphs quickly.Hybridmapcan be
run to target two distinct objectives: area minimization without
regard to design performance and timing-constrained area min-
imization. The area to be minimized is defined in terms of the
post-mapping -LUT count required to implement the design.
When the technology mapping objective is unconstrained area
minimization,hybridmapattempts to minimize LUT count by
packing as much logic as possible into PLAs. When a timing
constraint is specified,hybridmapcontrols the PLA packing
process so that LUT count is minimized subject to prespecified
timing constraints.

Hybrid device mapping takes place through a series of inter-
related steps. Input tohybridmapis represented as a directed
acyclic graph (DAG). Following preprocessing, a breadth-first
search algorithm generates logic subgraphs satisfying the input,
output, and Pterm constraints of the target PLA. An estimator
of the number of Pterms required by a subgraph (Pterm count
estimator) determines if a candidate subgraph meets the Pterm
constraint of the target PLA. Unlike minimization approaches,
such asEspresso[7], the estimator is sufficiently fast ( sec)
to allow embedding within the inner loop of subgraph extrac-
tion. Following extraction, candidate PLA subgraphs are ranked
based on LUT coverage and mapped to available PLAs. The
logic not mapped to PLAs is implemented in LUTs. When map-
ping under timing constraints, a delay estimator is integrated
into the design flow to evaluate the effect of subgraph extrac-
tion on design performance.

To illustrate the effectiveness ofhybridmap, the tool has been
used to map a set of the Microelectronics Center of North Car-
olina (MCNC) [8] benchmark circuits to hybrid devices. Results
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Fig. 1. Hybrid FPGA block (similar to Apex20KE [1]).

were obtained by mapping to Altera’s Apex20KE devices [1] for
both unconstrained and timing-constrained area minimization.
When mapping under timing constraints,hybridmapreduces re-
quired LUTs by 8% by mapping covered logic to PLAs. This
value increases to 14% if timing constraints are not considered.
This allows a larger design to be packed into a specific device or
the same design to be packed into a smaller, less costly device.

In Section II, a description of the background material for
hybrid technology mapping is presented. Section III motivates
our approach through the analysis of circuit data. In Section IV,
our technology mapping approach for unconstrained mapping
is described, while in Section V, timing-constrained mapping is
discussed. Details of the target FPGA architecture (the Altera
Apex20KE), are described in Section VI. Experimental results
obtained by applyinghybridmapto a collection of benchmark
circuits are presented in Section VII. Finally, Section VIII sum-
marizes our research and outlines directions for future work.

II. BACKGROUND

A. Problem Definition

A hybrid LUT/PLA FPGA device consists of a collection of
-input LUTs and multi-input, multi-output PLAs. The Pterm-

based PLA resource supports inputs, outputs, and
Pterms. For PLAs, , and define the PLA structural con-
straint and defines the PLA functional constraint.

For a target device containingPLAs, each of which can be
configured with inputs, outputs, and Pterms, the tech-
nology mapping objectives of unconstrained area minimization
and timing-constrained area minimization can be defined as fol-
lows:

• Unconstrained area minimization.Given an input circuit,
locate a mapping to circuit subgraphs and -input
LUTs such that input, output, and logic constraints of
corresponding resources are satisfied, the number of
post-PLA mapping LUTs, , is minimized, and is less
than , the number of LUTs available in the device.

• Timing-constrained area minimization.Given an input
circuit locate a mapping to circuit subgraphs and

-input LUTs such that input, output, and logic
constraints of corresponding resources are satisfied, the
number of post-PLA mapping LUTs,, is minimized, and

is less than , the number of LUTs available in the
device. The mapped circuit should operate at a minimum
clock frequency .

Theorem 1: The unconstrained area minimization problem
for hybrid FPGAs containing a bounded number of LUT and
PLA resources is NP-complete for general networks.

Proof: It has been shown that the area-optimal technology
mapping problem for -bounded networks is NP-complete
[9]. The subgraph extraction problem is more general than the

-bounded, single-output problem since multi-output sub-
graphs can consist of a collection of-bounded, single-output
networks. Therefore, unconstrained area minimization is
NP-complete.

Theorem 2: The timing-constrained area minimization
problem for hybrid FPGAs containing a bounded number of
LUT and PLA resources is NP-hard for general networks.

Proof: It has been shown that delay-bounded technology
mapping for heterogeneous FPGAs with LUTs and memory
blocks is NP-hard [10]. Since subgraph implementation in a
PLA block is more restrictive than subgraph implementation
in a memory block, the timing-constrained area minimization
problem for FPGAs with LUT and PLA resources is also
NP-hard.

B. Terminology

Input tohybridmapis a combinational circuit represented as
a DAG, , containing combinational nodes,, and inter-
connection edges,. Each node is a complex gate implementing
a local function as a sum-of-products representation of its input
signals. For a given node, is the set of nodes that drive

and is the set of nodes driven by. The cone of a
node , , is the set of transitive fanins of. The depth
( ) of a node is the length of the longest path, in terms of
available LUT resources, from primary inputs to. The required
signal arrival time is the time point a signal is needed at
the input or output to a node. The slack-value, , of a
node is the difference between the required signal arrival time
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at the output of and the depth of . For a specific hybrid de-
vice, a subgraph is consideredPLA-feasibleif the input, output,
and Pterm count of the subgraph satisfies the constraints of the
target PLA resource.

C. Related Work

Logic synthesis targeting FPGAs has been researched exten-
sively and numerous technology mapping approaches for LUT-
based FPGAs [11] have been developed. These approaches have
two main objectives, area and delay minimization, and can be
characterized by input representation. Input network types in-
clude tree-type [12], [9], MFFC-type [13], and general networks
[14], [15]. To address delay minimization issues, delay models
such as the unit-delay model [16], net-delay model [17], and
edge delay model [18] have been proposed.

To date, most research in FPGA technology mapping has
focused on FPGAs containing homogeneous type of resources,
although recently, technology mapping algorithms for devices
with LUTs of differing input sizes [19], [20] and PLAs have
been presented. In [21], a technology mapping algorithm for
devices with -input, single-output macrocells was presented.
The algorithm determines the minimum height-feasible
cut for circuit nodes and their cones. A heuristic technique is
described that exhaustively enumerates Pterm mapping options
and generates area and delay efficient design implementations.
Another technique [22], based ondag-map[14], minimizes
delay for macrocell architecture mapping. Since this archi-
tecture contains a homogeneous set of logic resources, it is
not necessary to consider tradeoffs between resources with
different mapping qualities (e.g., low versus high fanin, logic
density) in making mapping decisions.

The introduction of coarse-grained memory elements in
commercial devices (e.g., Altera’s Flex10K [23] and Xilinx’s
Virtex [24]) has motivated graph search approaches that iden-
tify suitable logic partitions for implementation in unused block
memories. Technology mapping approaches, described in [10],
[25], and [26], configure unused embedded memory blocks as
large multi-output ROMs to increase device utilization. These
memory packing algorithms provide insight into the hybrid
LUT/PLA FPGA mapping problem by identifying portions of
an input logic design that are appropriate for implementation
in a restricted resource. While memory blocks that have not
been used to implement memory functions can be leveraged
to implement combinational functions with extended logical
depth, limited memory-input counts currently restrict the
breadth of logic functions that can be implemented. As a result,
wide-fanin subcircuits, such as finite-state machines, must be
migrated to device LUTs.

Recently, Kaviani [27] investigated both the architectural pa-
rameters of hybrid FPGA architectures and supporting tech-
nology mapping approaches. The described technology map-
ping approach [27] for hybrid LUT/PLA architectures applies
partial collapsing and partitioning to isolate wide-fanin logic
nodes with single outputs. Input sharing is then used to deter-
mine the nodes to be merged into a PLA. The target devices
in our work contain wide-fanout PLAs, which are structures
with more than three outputs, necessitating subgraph-based ap-
proaches rather than node-based approaches.

Lin and Wilton [2] developed a technology mapping algo-
rithm targeting hybrid architectures. Input to the PLA-mapping
algorithm is first pre-mapped to four-LUTs using LUT tech-
nology mapping tools [15]. Subsequently, for each nodein
the mapped circuit, a local graph search collects transitive fanins
of such that the overall input, output and Pterm count of the
node set satisfies the PLA constraints. The collected set of nodes
is not fanout-free and the intermediate nodes that drive nodes
outside of the collected node set are implemented as subgraph
outputs. Each subgraph is subsequently mapped to PLAs. The
remainder of the design that is not mapped to PLAs is the LUT
partition. Since the PLA logic extraction approach is localized,
the algorithm is unable to identify and cover reconvergent paths.
In this paper, a hill-climbing phase is performed during sub-
graph generation to cover reconvergent paths with PLA logic.
A preliminary version of our hybrid technology mapping ap-
proach was previously presented [28] which did not provide for
this extended search or for timing-constrained mapping.

III. M ETHODOLOGY MOTIVATION

Previous approaches to hybrid mapping have focused on
node-collapsing techniques where multiple single-output,
fanout-free cones are merged into a multi-output node. This
technique can be used effectively to map subcircuits to PLAs
with small numbers of outputs [27]. For wide-fanout PLAs,
graph-basedcombinational node search approaches are needed.
Subgraph logic, mapped to Pterms, ideally share a significant
number of inputs. Several procedures used by our advanced
hybridmap approach are motivated based on subgraph and
design statistics.

As the number of PLA outputs increases, it would seem likely
that opportunities for Pterm input sharing across outputs would
also increase. The solid plot in Fig. 2 indicates that this is indeed
the case. The figure shows that as the number of outputs per
PLA grows, the average number of Pterm-based subgraph out-
puts driven by each input increases. Data points for the graph
were collected from 1000 subgraphs extracted from a collec-
tion of MCNC [8] benchmarks discussed in Section VII. For
low PLA output count values, little input sharing is present, but
as the number of PLA outputs increases, sharing becomes more
prevalent. Our experiments show that circuitry targeted to PLAs
should be identified via subgraph identification rather than first
isolating single-output logic cones followed by cone merging
to obtain multiple outputs. The dashed plot in Fig. 2 furthers
this assessment. The plot shows the average number of outputs
driven by each Pterm in a subgraph grows as a function of sub-
graph output count. Shared output values greater than one indi-
cate Pterm sharing among multiple outputs.

Unlike subgraph input and output counts, subgraph Pterm
counts can be difficult to estimate quickly. Subgraphs with
Pterm counts which exceed PLA constraints can be eliminated
from mapping consideration. Fig. 3 shows the number of sub-
graphs requiring prior toand after
subgraph logic minimization. A total of 1800 subgraphs were
considered where each of the subgraphs contains a maximum
of 32 inputs and 16 outputs to match a target PLA architecture
of 32 inputs and 16 outputs. The figure illustrates that the
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Fig. 2. Average number of outputs driven by a PLA subgraph input and Pterm.

Fig. 3. Number of subgraphs meeting Pterm countP .

number of Pterm-feasible subgraphs (e.g., )
identifiedprior to logic minimization is relatively small (about
28%). As shown in Fig. 3, experimentation with Espresso
[7] indicates that 10% more subgraphs become PLA-feasible
following logic minimization. The availability of a larger
number of available PLA-feasible subgraphs provides greater
flexibility in choosing PLA partitions that provide a maximal
reduction in post-mapped LUT count. This finding motivates
our development of a fastPterm count estimatorfor subgraphs
which can estimate post-minimization Pterm counts without
performing exhaustive logic minimization.

IV. M ETHODOLOGY FOR UNCONSTRAINED

AREA MINIMIZATION

A. Software Overview

As shown in Fig. 4,hybridmap, targeting area minimization
without timing constraints, uses a collection of heuristics to per-
form hybrid technology mapping. Input circuits are represented

in gate-level form (.blif format) as a forest of trees composed
of combinational nodes. Each node in a tree represents a logic
function in sum-of-products form. Specific processing steps in-
clude the following.

• Design preprocessing. Input circuit logic is initially re-
duced usingSIS[29] technology independent optimization
scriptsscript.algebraicor script.rugged. Resulting com-
plex gates are then decomposed to two-input gate form
using Huffman-tree decomposition scriptdmig[15] to fa-
cilitate high density PLA packing.

• LUT identification and subgraph extraction and
merging. Hybridmap performs cone-based clustering
on the two-input gate representation to heuristically
identify -input, one-output LUTs. Following LUT
identification, subgraph generation builds an initial set of
PLA-feasible subgraphs and subgraph merging combines
subgraphs to maximize logic coverage in PLAs. These
phases integrate a subgraph search algorithm, which
identifies reconvergent paths, and new Pterm count and
area estimators to quickly evaluate subgraph fitness.

• Subgraph selection. After completing subgraph gener-
ation and merging, subgraphs are ranked based on the
number of -LUTs covered by each subgraph. Thesub-
graphs with the highest rank are packed into theavail-
able PLAs while the rest of the user design is marked as
the -LUT partition.

• Vendor-specific computer-aided design (CAD). The
design partitions are output in hierarchical (two-level)
VHSIC hardware description language format and pre-
sented to vendor synthesis and place and route tools for
mapping to the target architecture.

B. LUT Identification

After technology independent optimization and decomposi-
tion, hybridmapcombines sets of two-input gates into-input,
one-output nodes using a dual-phase approach fromdag-map
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Fig. 4. Unconstrained area-minimization mapping flow.

[14]. A depth assignment phase identifies the depth () of each
graph node in terms of -LUT delay values ( ). This
assignment is made via a search performed in topological order
from circuit primary inputs to primary outputs [14]. Following
depth assignment, nodes are clustered based on their node depth
values. Clusters are formed via a search performed from circuit
primary outputs to primary inputs [14]. During subsequent sub-
graph generation, the clusters are used for area and depth esti-
mation purposes only. The original, unclustered graph is used
for the subgraph search.

C. Subgraph Generation

The subgraph generation process identifies input- and
output-feasible subgraphs from the input graphusing a
localized graph search approach. Input–output (I/O) feasible
subgraphs are combinations of nodes which meet the structural
constraints of the PLA. For a selected nodein graph , a
forward traversal phase collects a tree consisting of transitive

and identifies a set of nodes driving no more
than leaves, where is the available output count of
the PLA resource. During a second phase, an inverse search
traverses transitive fanin nodes of to identify subgraph
input signals and the nodes that can be absorbed into the PLA.
Following each subgraph identification, a Pterm count esti-
mator evaluates the number of Pterms required to implement
the subgraph.

1) Basic Approach:As shown in Fig. 5, a subgraph is iden-
tified by starting at a node, selected in topological order from
primary inputs to primary outputs. During a forward traversal
phase, starting from, the transitive are visited it-
eratively in a breadth-first fashion to identify a treerooted at
. At each iteration step, a new set of tree leaves is identified.

In Fig. 5(a), for a selected node, the shaded nodes form the
new leaves after the second iteration. New leaves are added in a
breadth-first fashion until their number exceeds the output con-
straints of the target PLA. At the end of the forward search, the
leaves of tree are designated as the root set, , of the tra-
versal. In Fig. 5(a), the shaded leaf nodes form the root set of
the traversal starting at.

Once the root set has been determined, an inverse traversal
of iteratively collects transitive fanins of the root set in a
breadth-first fashion to determine the subgraph associated with
the root set. At each iterative step in the basic approach, fanin
nodes to the root set are included only if their fanout is limited to

Fig. 5. Root set and subgraph determination.

the current subgraph. Collection of fanin nodes continues until
the subgraph input count exceeds the input count of the PLA
resource ( ). As shown in Fig. 5(b), subgraphs constructed in
this way, that meet the allowed Pterm count, can be targeted
to a PLA since their input and output counts are guaranteed to
fit PLA constraints. In order to avoid logic duplication and to
improve the runtime, seed nodes for subgraph generation are
selected only from the nodes that are not already covered by
any other subgraph. Additionally, the subgraphs are mutually
exclusive and include only those nodes not covered by other
subgraphs. Pseudocode for the subgraph generation algorithm
is shown in Fig. 6.

2) Hill Climbing: Taking Advantage of Reconvergent
Paths: The basic subgraph generation approach can be aug-
mented to take advantage of the reconvergent nature of some
logic. Reconvergent paths originate either as a design artifact
or due to recursive logic decomposition and resubstitution
operations performed during the technology independent
optimization process. These paths begin from a set of graph
nodes (e.g., ), diverge to drive inputs of multiple
nodes (set where , e.g., and ), and
converge down to a set of nodes (setwhere ,
e.g., ). Fig. 7 shows a circuit where output signals
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Fig. 6. Pseudocode for the subgraph generation algorithm.

from four gates ( ) diverge as inputs to multiple gates
( ) before converging into two outputs ( ).
These reconvergent paths could be covered with a single PLA
subgraph boosting LUT savings. Alternative PLA covering
approaches [2], [22], [27] do not identify reconvergent paths
that exceed PLA I/O limits. In our approach, a hill-climbing
phase extends forward and inverse traversal beyond the point
where PLA input and output limits are exceeded with the
expectation that the subgraph will reconverge.

The modified graph search approach starts in the basic sub-
graph generation mode. During either the forward or inverse tra-
versal phase of the search, the first instance of a PLA output
or input constraint violation forces the graph search to the hill-
climbing mode. If, at a further point in the graph search, the
I/O counts of the subgraph meet PLA , constraints, the
graph search switches back to the basic approach of subgraph
generation. This second phase of the basic subgraph generation
algorithm terminates whenever PLA input or output count vio-
lations are observed. Fig. 7 shows the hill climbing phase ap-
plied during the forward traversal phase when targeting a four-
input, two-output PLA. During experimentation, hill climbing
was found to improve LUT coverage versus the basic approach
for about 10% of searches.

3) Subgraph Pruning:If the hill-climbing procedure never
finds input or output counts that meet the PLA constraints it
will terminate upon reaching a fixed search depth,, or circuit
primary inputs, primary outputs or flip-flop inputs. As a result,
subgraphs generated using hill climbing may violate PLA input,
output or Pterm constraints. These subgraphs can be pruned
to fit in a PLA by iteratively removing excess inputs and out-
puts. As an initial step of pruning, subgraph logic is collapsed
to a two-level representation (sum-of-products form) and sub-
graph outputs are ranked in nondecreasing order by input re-
quirements. Each output requiring less thaninputs can be im-
plemented using a single -LUT. As this represents a minimal
penalty in terms of LUT coverage, logic and inputs solely asso-
ciated with these outputs are removed first from the subgraph.
This is followed by minimal multi-LUT removal, if necessary,
until structural constraints are met.

The approach is optimal when the paths that are followed in
determining a subgraph are the only possible paths.

Lemma 1: In the worst case, subgraph generation is per-
formed over all nodes and each node is visited during each
iteration of subgraph generation. This search results in a time
complexity of .

D. Product Term Count Estimation

During the subgraph generation process, each subgraph sat-
isfying the input and output constraints of the PLA is evaluated
as a potential candidate for PLA mapping. Subgraphs are col-
lapsed into two-level form for direct Pterm count verification
against the PLA Pterm count constraint.

Since Pterm count must be evaluated for each subgraph, the
Pterm count estimator runtime impacts the usability of the esti-
mator. Specifically, the estimator needs to satisfy the following
requirements: 1) it has to be fast, requiring runtimes well under
a second and 2) it only needs to verify that the post-minimiza-
tion Pterm count of a subgraph is less than that allowed by the
PLA. In order to quickly determine the post-minimization Pterm
count, three Pterm count estimators were considered: a statis-
tical technique, Espresso [7], and a new Pterm estimator.

1) Statistical Approaches:The statistical estimator attempts
to predict the post-minimization Pterm count based on initial
preminimization subgraph Pterm counts. To explore the useful-
ness of statistical data, 1000 wide-fanin ( ), wide-fanout
( ) subgraphs extracted from MCNC [8] benchmark cir-
cuits described in Section VII were passed through the logic
minimization tool, Espresso. It was observed that for a given
input and output count ( , ) the average Pterm
count requirement per subgraph prior to and after minimization
was 50 with a standard deviation10 and 29 with standard de-
viation 9 respectively. For the above-mentioned subgraphs,
the most important metric, the Pterm count reduction per sub-
graph, had a standard deviation of 10, making post-minimiza-
tion Pterm count prediction impossible.

2) Espresso:Espresso finds a minimal Pterm count cover
for each subgraph output in a iterative manner. During each
step, each Pterm (cube) is expanded to explore the possibility of
covering other Pterms (cubes) in the representation. The cov-
ered Pterms are subsequently removed. Exhaustive enumera-
tion steps and the exact minimization operations in Espresso
are characterized by long runtimes (e.g., 10 min) for wide-fanin
( ), wide-fanout ( ) subgraphs. The optimal
Espresso optionopoall attempts to minimize the Pterm count
by exploring all 2 patterns for an -output subgraph . The
fastest multi-output minimization option in Espresso,opo, min-
imizes the function where is the set of com-
plemented functions and selects the minimal form.

3) New Estimation Heuristic:Our new Pterm count esti-
mator determines Pterm count by attempting to cover a cube by
a maximum of two other cubes. Fig. 8(a)–(c) demonstrate the
minimization steps carried out by the estimator. The input to
the estimator is a two-level representation of the subgraph logic
functions presented in SIS PLA format [29]. Each row indicates
a Pterm (or cube) with true (1), complemented (0), or don’t
care (-) conditions for the input signals and each output column
represents a single output. When performing estimation, only
a single cube literal is expanded at a time. Minimization op-
erations such as Pterm covering, sharing, and input expansion
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Fig. 7. Reconvergent paths in a circuit graph during forward traversal.

Fig. 8. Minimization examples.

are applied incrementally to reduce Pterm count. In Fig. 8(a),
for the given output, the first and the second Pterm differ only
at the first input. As a result, the first Pterm covers the second
one. Similarly, the first Pterm covers the third Pterm, reducing
the overall Pterm count to one. Fig. 8(b) illustrates the covering
of a single Pterm by two other Pterms. An initial Pterm count
of three is required by the representation shown in theBefore
Expansioncolumn. The second Pterm under this column can
be expanded at the fourth input to form the middle two cubes
under theAfter Expansioncolumn. The first two Pterms under
theAfter Expansioncolumn can then be merged to produce the
representation shown under theIntermediate Resultcolumn in
Fig. 8(c). The final representation is obtained by merging the
second and third Pterms in theIntermediate Result. As seen
under theFinal Resultcolumn, the Pterm count is reduced to
two.

For our new estimation approach, onlyspaces are consid-
ered for an -output function, corresponding tocomplementa-
tions, one output at a time. Each output is complemented starting
from the one driven by the most Pterms and ending with the one
driven by the fewest Pterms. An example of output complemen-
tation is shown in Fig. 8(d). By choosing to complement only
the first output, the logic expressed by the first three Pterms is
now covered by the fourth. The phase information below the
truth table indicates whether the outputs are represented in true
(1) or complemented (0) form.

Lemma 2: Given that each Pterm must be evaluated against
every Pterm, the time complexity per subgraph of the estimator
is , where is the initial number of subgraph Pterms.

4) Estimation Comparison:In order to evaluate the effi-
ciency of the Pterm estimator used inhybridmap, wide-fanin
and wide-fanout subgraphs ( and ) were
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TABLE I
COMPARISON OFESPRESSO ANDESTIMATOR FORSUBGRAPHSWITH i � 32, o � 16

extracted from the MCNC benchmarks [8] listed in Table I (15
subgraphs per benchmark). Subsequently, minimization results
were obtained using Espresso (with optionsopoall and opo)
and the new Pterm count estimator. As can be seen from Table I,
althoughopoall generates exact post-minimized Pterm counts,
its runtime is prohibitively large to be of use. The optionopo
achieves a 99% accuracy in post-minimization Pterm count
estimation in less than 1% of the runtime ofopoall. The Pterm
estimator is the fastest of all the approaches generating a 99%
accurate result compared to the optionopoall in about 8% of
the time required by the optionopo.

E. Area Estimation

To pack PLAs with subgraphs leading to maximal LUT count
reduction, candidate subgraphs are ranked based on their LUT
coverage. Our area estimator determines post-mapping LUT re-
duction due to each subgraph based on the following consid-
erations: 1) Each primary output (PO) or flip-flop input in the
input graph is an output of a LUT or a PLA and 2) Except for
primary inputs, each LUT or PLA input is also a LUT or PLA
output. The LUT identification process in Section IV-B itera-
tively computes the minimal LUT depth of each node to identify
LUT boundaries. A change in LUT depth along an input-output
path implies introduction of a new LUT. Nodes with the same
depth can be collapsed into a single LUT subject to LUT I/O
constraints. The area estimator uses the following strategy: A
LUT output is identified at locations where the depth () of a
node is less than the depth of at least one .

Mathematically, the condition for a node to be the output ()
of a LUT ( ) can be stated as

if or (1)

When counting the number of LUTs covered by a subgraph,
each intermediate node, with depth , satisfying (1) is
counted as the output to a -LUT and the LUT count is
incremented by one. Additionally, the input side boundary
of the subgraph is evaluated for any LUT count penalty. If
a subgraph input node , with depth , is not already the
output to an existing LUT cluster, an extra LUT that generates

is required. For every input node that does not satisfy (1),

the LUT count covered by the subgraph is decremented by one
to account for the increase in post-mapping LUT count.

Fig. 9(a) shows a circuit covered by nine three-LUT clusters.
Intermediate nodes { } and , cover a subgraph
with inputs I0, I1, I2, I3, and I4 and outputs O1 and O2. The
numbers shown next to each node indicate the depth of the node.
When the subgraph is mapped to a PLA, as shown in Fig. 9(b), a
total ofseventhree-LUTs are covered collectively by the nodes

and O1, O2. I0 and I2 need
to be generated to drive the PLA and, hence, the subgraph LUT
coverage is decremented by two. As a result, the three-LUT cov-
erage by the subgraph is five. The final LUT count is computed
as which is equal to the post-mapping three-LUT
count shown in Fig. 9(b).

Lemma 3: The time complexity of each invocation of the
area estimator is since in the worst case all nodes could
be examined during each invocation.

Post-processing by LUT mapping tools, such as Flowmap
[15], pack LUTs densely, reducing final LUT counts by about
15% on average. Since both subgraphs and circuit graphs ex-
perience the same percentage reduction during post-processing,
the area estimator computes the percentage of LUT count cov-
ered by each subgraph.

F. Subgraph Merging and Ranking

Following generation, smaller subgraphs can be bin-packed
based on input sharing to construct combined implementations
that meet PLA , , and Pterm requirements.

The general gain function for merging two subgraphs, is
given as

Area (2)

where Area is the estimate of the -LUT count (obtained as
described in Section IV-E) covered by the subgraphs considered
for merging. A merged subgraph is judged to bePLA-feasible
( ) if input, output, and post-minimization Pterm
counts meet PLA requirements. Violation of PLA constraints
sets to zero. Although input and output limits can be
evaluated by simple counting, Pterm count verification may re-
quire additional invocation of the Pterm count estimator. Given

target PLAs, following merging, thefeasible subgraphs that
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Fig. 9. Estimating LUT area covered by a subgraph. (a) Circuit covered by nine 3-LUT clusters. (b) Circuit covered by four 3-LUTs and a PLA.

Fig. 10. Timing-constrained area minimization mapping flow.

cover the most LUTs are selected. The remainder of the circuitry
is mapped to -LUTs.

Lemma 4: The subgraph merging process has time
complexity since it can involve individual
comparisons for each of at mostpossible subgraphs.

V. TIMING-CONSTRAINED AREA MINIMIZATION

Timing-constrained area minimization is invoked when a
minimum design clock frequency is specified in conjunction
with the design. This timing constraint must be met by the
delay of the longest combinational path in the circuit when
mapped to a LUT-based device. For the designs evaluated in
this paper, it is determined that LUT-only mappings achieve the
desired minimum frequency and that logic migration to PLAs
will maintain rather than improve design performance. Since
wide-fanin, wide-fanout PLAs typically incur longer delays
than LUTs (e.g., in Apex20KE),
hybridmap maps noncritical paths of the original design to
PLAs and the remainder to LUTs, keeping the delay of the

longest combinational path within specified limits achieved by
LUT-only mappings.

The basic flow of timing-constrained mapping is shown in
Fig. 10. Steps that have been added from the unconstrained flow,
shown in Fig. 4, appear as darkly shaded blocks. These main
additions include the following.

• Delay estimation. Timing-constrained mapping re-
quires accurate, iterative evaluation of mapped-circuit
performance. Our delay estimator uses LUT packing
information to compute the arrival time and delay-slack
value of each node in the circuit and the largest com-
binational delay in the circuit. Logic and estimated
routing values are used to approximate mapped-circuit
performance.

• Iterative timing-constrained subgraph generation and
selection.Following delay estimation, an iterative map-
ping process is started to partially transfer design logic to
PLAs. During each iteration step, subgraphs suitable for
PLA implementation are extracted along noncritical paths.
After PLA-feasible subgraphs are identified, the highest



554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

ranking subgraph is packed into an available PLA and cir-
cuit delay is updated to account for the delay perturbation
due to the included PLA. If fewer thanPLAs have been
packed, the next iteration of subgraph generation and se-
lection is started. The iterative search process continues
until no additional PLA resources are available.

Each of the steps is integrated into thehybridmapflow based
on user-preference and clock-period specification.

A. Delay Estimation

The goal of the delay estimator is to compute the design crit-
ical path and delay slack values in terms of logic and estimated
routing delays. The delay estimation process is composed of
delay tracing and delay update phases. The delay tracing proce-
dure [30] computes required signal arrival time and slack values
associated with each LUT and any subgraph supernode in a par-
tially mapped design. Each circuit node is assigned a required
signal arrival time and slack value equal to that of the associ-
ated LUT or supernode. Once an available PLA is packed, the
delay updating procedure performs LUT reclustering and design
depth value update so that remaining PLAs can be packed.

1) Delay Tracing the Network:The delay tracing procedure
uses depth information to identify noncritical paths in the
design. For each LUT cluster the required signal arrival time
(RT) is computed at each output and input. Subsequently, the
slack value (SV) at each cluster output is computed. A detailed
example of circuit delay tracing is presented in [30]. Delay
tracing has previously been used for LUT-based technology
mapping [13] and technology mapping for FPGAs with LUTs
and memory blocks [25].

2) Reclustering and Updating the Circuit Delay:Prior to
packing an available PLA, the depth of each circuit node is com-
puted in terms of LUTs. Once a PLA is packed, the circuit delay
values change along the paths through the PLA, necessitating
circuit delay updates. The PLA subgraph is initially collapsed
into a multi-input, multi-output supernode. The remaining cir-
cuit nodes are subsequently reclustered around the supernodes.
Fig. 11 shows the original circuit covered by LUT clusters and
a PLA subgraph collapsed to form a supernode.

When updating circuit delay values, LUT clusters are recon-
structed with respect to the I/O boundaries of supernodes. The
delay updating procedure progresses in two phases. During
the first phase, the LUT-clustering procedure described in
Section IV-B considers all the nodes in the circuit that are not
along the paths through the supernodes. Depth values are com-
puted for the selected nodes and are grouped to form-LUT
clusters. Fig. 11 shows LUT clustering for such selected nodes.
During the second phase of the delay updating procedure, the
depth along paths through the supernodes are computed using
the approach described in Section IV-B. For every supernode

, the depth at the output ( ) of is computed as the sum
of largest depth among inputs that drive and ,
where is the delay of the PLA resource. In Fig. 11,
the depth for a selected supernode output, O1, is computed as

.
The depth at O2 is computed as

. The delay values computed at the

Fig. 11. Example of updating the circuit delay.

outputs of each supernode can subsequently be used to compute
the delay of the nodes driven by the supernodes.

B. Timing-Constrained Subgraph Generation

The timing-constrained subgraph generation process is based
on the basic subgraph extraction approach described in Sec-
tion IV-C. The timing-constrained approach searches for sub-
graphs along noncritical design paths since PLAs inserted along
these paths have a higher probability of maintaining LUT-only
timing performance. This search does not guarantee LUT-only
performance since subsequent routing congestion may lengthen
path route lengths, but, as shown in Section VII, in almost all ex-
perimental cases, performance is maintained. To control delay,
subgraphs are collected only along paths that contain a min-
imum slack value of . In the
likely event that a subgraph search encounters a node with slack
value , the subgraph generation process terminates fur-
ther searches along paths through that node. Thus, during the
forward search phase of subgraph extraction, an encountered
node , whose fanout has a slack value ( ),
is automatically considered a member of the subgraph root set

. Similarly, during the backward search, any encountered
node whose slack value is automatically
considered an input to the subgraph. These cases are shown
in Fig. 12 for a subgraph () search starting from node. If
PLA delay ( ) is four and LUT delay ( ) is
one, then, . As shown
in Fig. 12(a), during the forward graph search, the nodeis
considered a member of , since ( 3). The
darkly shaded nodes belong to the and the lightly shaded
nodes belong to the intermediate nodes of the subgraph. Simi-
larly, as shown in Fig. 12(b), during the backward graph search,
the node is considered as input to since ( 3).
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Fig. 12. Root set and subgraph determination – timing-constrained.

In Fig. 12(b), the unshaded nodes and signalrepresent the
inputs to the subgraph.

VI. TECHNOLOGYMAPPING TO THEAPEX20KE

A. Apex20KE Architecture

To illustrate the benefit ofhybridmap, our new technology
mapping approach was targeted to Altera Apex20KE devices
[1]. This hybrid FPGA architecture contains embedded Pterm
blocks with 32 inputs, 16 outputs, and 32 Pterms [4]. As shown
in Fig. 13, each Pterm block is composed of macrocell structures
which can be fed with any combination of the 32 input signals
of either polarity. Each macrocell for an Apex20KE Pterm block
can either drive a macrocell output or a neighboring macrocell,
but not both. As a result, the macrocell architecture does not
allow sharing of Pterms/sum of Pterms across multiple outputs.
Inputs from neighboring macrocells (parallel expanders) are uti-
lized whenever it is necessary to use more than one macrocell
to implement a selected output.

B. Unconstrained Area Minimization

As each vendor PLA architecture differs greatly, some
adjustment to our basic mapping algorithms are required to
achieve best-possible PLA mapping results. For example, the
Apex20KE device allows for the programmable inversion of
an AND gate output. The inverter can be programmably set to
merge multiple single-input Pterms into one multi-input Pterm
using DeMorgan rules (e.g., ). Our Pterm
count estimator was modified to consider this architectural

feature. The average difference in Pterm reduction predicted
by the estimator improved by about 5% when specific Apex
architectural features were taken into account.

C. Timing-Constrained Area Minimization

The implementation of logic functions with greater than two
product terms requires special processing to meet timing con-
straints. The delay equation for a function requiringmacro-
cells is , where and
are the delays of a macrocell and parallel expander, respectively.
As for the Apex20KE, the use of parallel ex-
panders results in a significant delay for wide Pterm functions.
For functions requiring more than four Pterms, Pterm outputs
can be combined using four-LUTs. This approach also allows
for function complement generation that can be used during
minimization. The added LUTs lead to a minimal reduction in
LUT coverage.

VII. RESULTS

To evaluate the performance ofhybridmap, the MCNC
benchmarks [8] listed in Table II were mapped to hybrid FPGA
architectures. Unless specified otherwise, the target hybrid
architecture is the Altera Apex20KE [1]. Results were obtained
on a 386-MHz Celeron-based PC containing 128-MB RAM.
All experiments, unless noted, involved the use of the Pterm
count estimator.

The first experiment conducted with our system was to
evaluate the amount of LUTs that could be absorbed into PLAs
for a typical design without timing constraints (unconstrained).
Two initial representations of input circuits were considered,
designs reduced to two-input gates and designs preclustered
to four-input nodes (LUTs). Previous embedded memory
mapping approaches [26] have used four-LUTs as the basis
for subgraph search. For our system, both two-input gate rep-
resentations and four-bounded representations are supported.
For the benchmarks listed in Table II, two separate input graph
representations were constructed. For the two-bounded case,
each input netlist was optimized with SIS (script.algebraic) and
dmig [15] to create two-bounded nodes. For the four-bounded
(four-LUT) case, each netlist was optimized with SIS and
Flowmap [15]. In both cases, resulting circuits were processed
by hybridmap. Results in Table II indicate remaining LUT
counts afterhybridmapcompletion for a range of PLAs per
device and average LUT coverage per PLA. Post-hybridmap
LUT processing was performed by Flowmap. It can be seen
that two-bounded graphs allow for greater or equal search
flexibility. For 10 PLAs per device, approximately 17 LUTs
could be covered per PLA. Note that LUT coverage per
PLA decreased as the number of PLAs per device increased.
Area-driven results with PLA counts similar to the Apex device
( ) indicate a 15% reduction in LUT usage.

A. Pterm Count Estimation

In a second experiment, the benefit of the Pterm-count es-
timator was evaluated. Table III indicates leftover LUT counts
for hybridmaprun both with and without Pterm estimation for
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Fig. 13. Apex20KE macrocell.

TABLE II
UNCONSTRAINEDMAPPING OFDESIGNS TOr PLAS. RESULTSWERE GENERATEDWITH THE USE OF THEPTERM COUNT ESTIMATOR

TABLE III
UNCONSTRAINEDHYBRIDMAPRESULTSWITH AND WITHOUT PTERM COUNT ESTIMATOR

a range of PLAs per device (). For runs without Pterm es-
timation, all subgraphs that exceeded 32 Pterms were imme-
diately eliminated from consideration without regard to their
likely post-minimizationPterm count. Totalhybridmaprun time
is indicated in brackets.Post-hybridmapLUT processing was
performed with Flowmap. As seen in Table III, the Pterm esti-
mator allows for approximately 4% improved overall LUT cov-
erage for a modest increase in overallhybridmaprun time. In
some cases, the use of the Pterm estimator reduced run time

since subgraphs were more aggressively extracted, reducing the
search space. All designs were processed starting from a two-
input gate representation.

B. Comparisons to Previous Work

As discussed in Section II-C, several previous approaches
to hybrid technology mapping with no timing constraints have
been developed. In a customized experiment,hybridmapwas
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TABLE IV
AREA COMPARISONWITH NODE-BASED HYBRID MAPPING [31]

Fig. 14. Hybridmap comparison to Lin and Wilton [2].

compared to results reported in [31] for hybrid devices con-
taining low fanout PLAs ( inputs, outputs, and

Pterms). As shown in Table IV, the results obtained
fromhybridmapwhen targeting these small PLAs were compet-
itive with previously-reported work. The LUT counts noted in
the fifth and eighth column indicate remaining LUTs after logic
has been mapped to PLAs. The optimized benchmarks used for
these experiments were previously used in [31] and were ob-
tained from Kaviani. Note that the number of PLAs per device
varied from design to design.

Fig. 14 compareshybridmapresults against those presented
by Lin and Wilton in [2] (Fig. 12, row 1). The target architecture
for both cases is the Apex20KE architecture with PLA counts
ranging from 1 to 10. The input to the PLA mapping approach
described in [2] is a four-LUT mapped circuit from which
PLA subgraphs are extracted based on a search algorithm. The
uncovered nodes in the design at the end of the PLA mapping
process are counted to obtain the final LUT count. The bench-
mark circuits used by Lin and Wilton were obtained from Lin
and were input tohybridmap. In order to maintain a common
ground for comparison, no preprocessing operations such
as logic optimization or two-input gate decomposition were
performed on the input benchmark circuits. The post-mapping
four-LUT count of each benchmark circuit was obtained by
counting the number of nodes in the four-LUT partition output

of hybridmap. It can be seen that, as the number of available
PLAs increases,hybridmap achieves better LUT coverage
than the approach presented in [2]. A maximum improvement
of 22% was achieved for 10 PLAs per device ( ). The
improved PLA packing density obtained byhybridmapis at-
tributed mainly to two of the procedures available inhybridmap
but not in [2]: subgraph-based logic extraction accentuated
by hill climbing and Pterm estimation targeting Apex20KE
devices.

Since the work described in this paper is the first reported
timing-constrained mapping approach for hybrid FPGAs, it was
not possible to compare against previous work in this area.

C. Mapping to Altera Apex20KE Devices

As a final experiment,hybridmapwas applied in uncon-
strained and timing-constrained mode to the benchmark circuits
listed in Table V. For delay and area comparison purposes,
designs were initially mapped entirely to LUTs using Altera
Quartus v2000.02 [5], the commercially available Altera tool
set. The critical path of each mapped circuit was then used
as the minimum clock frequency constraint forhybridmap.
Following this initial mapping,hybridmapwas then applied to
the initial (non-Quartus mapped) circuits and Pterm and LUT
partitions were created. These partitions were subsequently
mapped to EP20KE device resources using Quartus with
speedas the synthesis objective. For each design, the smallest
EP20KE device which could support LUTs-only mappingand
design pin constraints was targeted.

Table V compares the area and delay values obtained for
four-LUT implementation against that obtained forhybridmap
timing-constrained and unconstrained implementation. LUT
values indicate the number of LUTs remaining afterhybridmap
processing. Note that not all designs have logic mapped to
Pterms in the timing-constrained mode. Logic could not be
migrated to Pterms for designs with a zero in column 6 without
increasing the circuit critical path. The bottom row of the
table presents the arithmetic sum of the results obtained for
benchmark circuits.Hybridmapmeets the delay value incurred
by a purely four-LUT implementation, and packs about 8% of
initial design LUTs to Pterms. For the unconstrained case, all
designs had some logic mapped to Pterms. Overall, 14% of
logic could be mapped from LUTs to Pterms. It was estimated
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TABLE V
LUT COVERAGE FORAPEX20KE DEVICES (SPEEDGRADE -1)

with hybridmapthat if Pterm blocks required 2X, rather than
3X, the delay of LUTs, timing-constrained LUT coverage
would rise from 8% to 11.8%, approaching 14% unconstrained
coverage.

VIII. C ONCLUSION

Hybrid devices facilitate efficient area and delay tradeoffs
for FPGA designs. In this paper, heuristic techniques to au-
tomatically identify design partitions for implementation in
PLA-based logic resources have been described. A subgraph
extraction approach based on heuristic search and hill-climbing
was found to quickly identify feasible PLA subgraphs including
those with reconvergent paths. A Pterm-count estimator has
been developed which is sufficiently fast enough to be used in
the inner loop of the subgraph generation. An area estimator
further guides the subgraph selection process by estimating
the LUT count coverage due to each subgraph.Hybridmaphas
been developed to support both unconstrained and timing-con-
strained area optimization. The technology mapping tool,
evaluated using Altera’s Apex20KE devices [1], reveals that,
on average, 8% of four-LUT area can be transferred to Pterms
while preserving device timing performance and 14% can be
transferred without timing constraints. This provides additional
space for subsequent design additions or for migration to a
smaller FPGA device.
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