ESPRESSO Logic Minimizer

ESPRESSO is a fast, efficient heuristic two-level logic minimizer. It makes use of

- Shannon expansion
- Unate recursive paradigm

\[f = x f_x + \overline{x} f_{\overline{x}} \]
(simplified for unate functions)

- Choose the splitting variable
- Operate on two cofactors
- Merge the results

\[\text{operate}(f) = \text{merge} \{ x \cdot \text{operate}(f_x), \overline{x} \cdot \text{operate}(f_{\overline{x}}) \} \]

Operations:
- simplification, complement, tautology check, etc.
Matrix representation

$M(f)$ represents cover F of function f:

$$M_{ij}(f) = \begin{cases}
1 & \text{if variable } x_j \text{ appears in cube } c_i \\
0 & \text{if variable } \overline{x}_j \text{ appears in cube } c_i \\
2 & \text{(don't care) otherwise}
\end{cases}$$

Example:

$$f = \overline{abc}d + ace + \overline{abcde} + bce$$

$$M(f) = \begin{bmatrix}
1 & 2 & 1 & 2 & 1 & 0 \\
2 & 1 & 2 & 1 & 0 & 1 \\
1 & 0 & 1 & 2 & 0 & 0 \\
2 & 1 & 1 & 2 & 0 & 0
\end{bmatrix}$$

Note: only input part of the cubes are shown.

Cofactoring example

Given function f and its matrix M:

$$f = \overline{abc}d + ace + \overline{abcde} + bce$$

$$M(f) = \begin{bmatrix}
0 & 1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 & 0 \\
2 & 1 & 1 & 2 & 0
\end{bmatrix}$$

Cofactors w.r. to variable b

$$f_b = \overline{ad} + ace + \overline{ce}$$

$$M(f_b) = \begin{bmatrix}
0 & 2 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 \\
2 & 2 & 1 & 2 & 0
\end{bmatrix}$$

$$f_b = ace + \overline{a}cde$$

$$M(f_b) = \begin{bmatrix}
1 & 2 & 1 & 2 & 1 \\
0 & 2 & 1 & 1 & 0
\end{bmatrix}$$
Choice of splitting variable

Best splitting variable x: most binate (non-unate) variable

- covers F_x and $F_{\bar{x}}$ become unate after a minimum number of splittings
- the total number of cubes in F_x and $F_{\bar{x}}$ is minimum

Most binate variable is the one with maximum number of 0’s and 1’s in $M(f)$.

Detecting unateness & tautology

- Cover F is unate if each column of $M(f)$ is
 - void of 0’s (pos. unate), or
 - void of 1’s (neg. unate)

- F is the tautology if $M(f)$ has a row of all 2’s (don’t cares).
Recursive tautology

Follow the recursive paradigm, splitting at the most binate variable x

$$F = xF_x + \overline{x}F_{\overline{x}}$$

Termination & simplification rules:

- The cover F is void:
 $$F = \emptyset$$

- F has a row of all 2's (dc's): tautology
 $$F \equiv 1$$

- F depends on only one variable x which has both 0 and 1.

- When $F = F_1 \cup F_2$, with disjoint support, check tautology in F_1, F_2 separately.

If cover is positive (negative) unite at x, use:

$$f = xF_x + \overline{x}F_{\overline{x}} \quad \text{(or} \quad F = F_x + \overline{x}F_{\overline{x}})$$

Tautology example

Recursive splitting + evaluation

$$F = ab + ac + a' + ab'c'$$

![Tautology example diagram]
Recursive complementation

Follow the recursive paradigm, splitting at the most binate variable x (to get unate cofactors)

$$F = xF_x + x\overline{F_x}$$

Termination & simplification rules:

- The cover F is void: $F \equiv 1$.
- F has a row of all 2's (dc's): $F \equiv 1$
 $$\overline{F} = 0$$
- F has single row with one 0 or 1 at x:
 $$\overline{F} = x \text{ or } \overline{x}$$
- There is a column x of all 1's: $F = xF_x$
 $$\overline{F} = \overline{x} + \overline{F}_x$$
- There is a column x of all 0's: $F = \overline{x}F_x$
 $$\overline{F} = x + \overline{F}_x$$

If cover is positive (negative) unate at x, use

$$F = F_x + x\overline{F}_x \quad (\text{or } F = x\overline{F}_x + F_x)$$

Complementation example

Recursive splitting

$F = \overline{a}b + ac + a' \overline{b}'$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

$F_a' = 1 \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$

$F_a' = \emptyset$

$F_{ab'} = c \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$

$F_{ab'} = c'$

$F_{ab} = 1 \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$

$F_{ab} = \emptyset$
Complementation example

Reconstruct by merging

\[
\begin{align*}
F_{a} &= \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \\
F_{a}' &= \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \\
F_{b} &= \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \\
F_{b}' &= \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \\
F_{ab} &= c \begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \\
F_{ab}' &= \begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \\
F_{ab} &= \begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \\
F_{ab}' &= \begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \\
F' &= ab'c' \\
F'_a &= F_{ab} + b' F_{ab}' = b'c' \\
F'_a &= F_{ab} = 1 \\
F_{ab}' &= c \\
F_{ab} &= 0
\end{align*}
\]

Expand

Fundamental procedure of Espresso.

Let \(F \) be a cover of \(f \).

Examine if a cube \(c \) can be expanded (lifted) to, and replaced with, a prime implicant \(d \), such that \(c \subseteq d \).

Each cube \(c \in F \) is replaced by a single prime implicant, so that new cover \(F' \)

\[| F' | \leq | F | \]
Expand direction

Two problems:

- choice of the cube to be expanded
- the direction of expansion

Blocking matrix guides the expansion of a cube into prime.

\[f = bcd + abc + abd \]
\[\bar{f} = \bar{c}d + \bar{a}d + \bar{a}b + \bar{b}c \]

Blocking matrix for \(a\bar{b}c \):

\[
B = \begin{bmatrix}
0 & 0 & 1 & 0 & \bar{c}d \\
1 & 0 & 0 & 0 & \bar{a}d \\
1 & 0 & 0 & 0 & \bar{a}b \\
0 & 0 & 1 & 0 & \bar{b}c
\end{bmatrix} \rightarrow \begin{bmatrix}
0 & 0 & 1 & 0 & \bar{c}d \\
1 & 0 & 0 & 0 & \bar{a}d \\
1 & 0 & 0 & 0 & \bar{a}b \\
0 & 0 & 1 & 0 & \bar{b}c
\end{bmatrix}
\]

How to Expand

Validity of expansion, containment check: is the expanded cube contained in \(F \)?

- Let \(c \) be the cube being expanded, and \(\bar{c} \) be the cube that contains the added minterms. Need to check if: \(\bar{c} \subseteq (F - c) \).

This can be solved by the tautology check:

\[(F - c)\bar{c} \equiv 1\]

Note: this also applies to Reduce operation.
Expand example

Example:

\[f = b\overline{c}d + \overline{a}bc + abd \]

Expand \(abc \rightarrow ac \): test if \(abc \subseteq f \). To do that, check if \(f_{abc} = 1 \)

\[f_{abc} = \overline{d} + d \neq 1 \]

Is cube \(ac \) is a prime implicant?

Try \(ac \rightarrow a \): test if \(ac \subseteq f \)

\[f_{ac} = b\overline{d} \neq 1 \]

Try \(ac \rightarrow c \): test if \(ac \subseteq f \)

\[f_{ac} = b\overline{d} \neq 1 \]

Cannot expand any further, cube \(ac \) is a prime implicant.

Reduce

Transform a cover of prime implicants

- replace each prime implicant \(p \), where possible, with a smaller, non-prime implicant contained by \(p \).

Purpose of Reduce: iterative improvement

- moves function away from local minimum
- hopefully the subsequent Expand will determine a better set of primes

Similar to Expand (inverse):

![Diagram showing reduction and expansion process]
Redundancy removal

Irredundant (minimal) cover F: no proper subset of F is also a cover of f.
Extract minimal subset of cubes to cover f.
Example:

$$F = ab + ac + bc$$
$$\Rightarrow ab + bc$$

Detecting essential primes

Essential prime: prime implicant that covers a minterm not covered by any other prime implicant. Must be included in any cover of f.

Essential primes can be removed from F (put aside) to simplify logic minimization.

Theorem: Let F be written as $G \cup p$, where p is a prime implicant of function f, and $G \cap p = \emptyset$. Then, p is an essential prime implicant of f if and only if p is not covered by consensus(G, p).
Essential primes - examples

Example 1:

\[p = ab\overline{cd}, \ G = bd, \ \text{cons}(G,p) = ab\overline{c} \]

\(p \subseteq \text{cons}(G,p) \), hence **not essential**

\[
\begin{array}{cccc}
\text{cd} \\
ab & 00 & 01 & 11 & 10 \\
00 & & & & \\
01 & & 1 & 1 & \\
11 & 1 & 1 & 1 & \\
10 & & & & \\
\end{array}
\]

Example 2:

\[p = ab\overline{c}, \ G = bd, \ \text{cons}(G,p) = abd \]

\(p \not\subseteq \text{cons}(G,p) \), hence **essential**

\[
\begin{array}{cccc}
\text{cd} \\
ab & 00 & 01 & 11 & 10 \\
00 & & & & \\
01 & & & 1 & \\
11 & 1 & 1 & 1 & \\
10 & & & & \\
\end{array}
\]

Last_gasp and Make_sparse

Last_gasp

- Computes the maximal reduction of every cube of \(ON(f) \).
- Modified Reduce and Expand operations
- Guarantees a **weak form of optimality**:
 * no single prime implicant can be added to the cover such that two primes can be eliminated

Make_sparse, final operation

- Attempts to make PLA as sparse as possible (better folding, fewer transistors, fanin, etc.).
ESPRESSO Options

- Heuristic minimization (*espresso*)
- Exact minimization (*espresso -Dexact*)
 Combines ideas of Q-M method and Espresso
 * all prime cubes generated by the method of Espresso
 * covering problem is solved using branch-and-bound techniques
 * the size of a covering table is reduced by extracting essential prime implicants
- Multiple-valued logic minimizer (*espresso -mv*)
 * symbolic minimization
 * constrained state encoding, etc.