
2. Page 36, in the equation on line 3, replace the last line
\[= \sum_{j=0}^{n-2} x_j 2^{-(n-1-j)} \cdot A = 2^{(n-1)} \left(\sum_{j=0}^{n-2} x_j 2^j \right) \cdot A \]
by
\[= \sum_{j=0}^{n-2} x_j 2^{-(n-1-j)} \cdot A = 2^{-(n-1)} \left(\sum_{j=0}^{n-2} x_j 2^j \right) \cdot A \]

3. Page 49, line 4 (2nd line of the equation for \(r_m \)), replace
\[r_m = 2r_{m-1} - q_m(2Q_{m-1} + q_m 2^{-m}) \]
by
\[r_m = 2r_{m-1} - q_m(2Q_{m-1} + q_m 2^{-m}) \]

4. Page 68, line 15, replace the sentence “A similar effect is achieved by using a significand of 1.f instead of 0.f, since this adds 1 to the exponent.” by “A similar effect is achieved by using a significand of 1.f instead of 0.1f, since this adds 1 to the exponent.”

5. Page 82, last paragraph, replace the sentence “In the CLOSE case we first predict the exponent difference, based on the two least significant bits of the operands, ...” by “In the CLOSE case we first predict the exponent difference, based on the two least significant bits of the two exponents, ...”

6. Page 83, Table 4.10, Step 1 for the CLOSE case, replace “Predict exponent” by “Predict exponent difference”

7. Page 110, last sentence should be “Note that unlike Figure ??, the Ladner-Fischer adder employs fundamental carry operators with a fan-out value higher than 2. Such an implementation with fan-outs of up to \(n/2 \) requires buffers which add to the overall delay.”
8. Page 110, Figure 5.10, remove the right portion of the figure.

9. Page 129, 1st line (below Figure 5.25) should say: \(k \) primary inputs

10. Page 159, last sentence should be: The implementation in Figure 6.12 corresponds to the setting \(a = b = d = 0 \) and \(c = e = f = 1 \).

11. Page 167, last sentence in Section 6.5, replace “In this case, the rounding step for \((A \times B + C)\) is performed at the same time as the multiplication by \(D \), by adding the partial product \(\text{Incr.} \times D \) to the CSA tree.” by “In this case, the rounding step for \((X \times Y + Z)\) is performed at the same time as the multiplication by \(B \), by adding the partial product \(\text{Incr.} \times B \) to the CSA tree.”

12. Page 180, reference [14], replace “600 floating-point unit” by “6000 floating-point unit”

13. Page 206, line 5 from the bottom, replace “where \(Q_{i-1} \) is the partially calculated root at step \((i - 1)\), i.e., \(Q_{i-1} = 0.q_1q_2 \cdots q_{i-1} \)” by “where \(Q_{i-1} \) is the partially calculated root at step \((i - 1)\), i.e., \(Q_{i-1} = 0.q_1q_2 \cdots q_{i-1} \)”

14. Page 208, equation (7.22), replace

\[
\sqrt{1.f \cdot 2^{E-1023}} = \begin{cases}
0.1f \cdot 2^{(E-1)/2-1023} & \text{if } E \text{ is odd} \\
0.01f \cdot 2^{E/2-1-1023} & \text{if } E \text{ is even}
\end{cases}
\]

by

\[
\sqrt{1.f \cdot 2^{E-1023}} = \begin{cases}
0.1f \cdot 2^{(E+1)/2-1023} & \text{if } E \text{ is odd} \\
0.01f \cdot 2^{E/2+1-1023} & \text{if } E \text{ is even}
\end{cases}
\]

15. Page 241 equation (9.53), replace

\[
y_m = y_i \prod_{k=i}^{m-1} (1 + s_k 2^{-k}) \approx y_i \left(1 + s_i 2^{-i} + s_{i+1} 2^{-(i+1)} + s_{i+2} 2^{-(i+2)} + \cdots\right)
\]

by

\[
y_m = y_i \prod_{k=i}^{m-1} (1 + s_k 2^{-k}) \approx y_i \left(1 + s_i 2^{-i} + s_{i+1} 2^{-(i+1)} + s_{i+2} 2^{-(i+2)} + \cdots\right)
\]

16. Page 275, Exercise 11.9, replace \(A - 2^a - 1 \) by \(A = 2^a - 1 \).