Why Analog?

- Real-world signals are Analog.
- Signals generated by sensors are analog
- Digital signal processing of signals requires Analog-to-Digital Conversion.
- Analog signal needs to be amplified and filtered before A/D.
- Amplifiers and Filters are Analog Circuits.
- A/D is a Mixed-Signal Circuit.
Digital signals in a digital communication system behave as analog signals at certain stages of transmission, receive and processing.

Ex 1. Lossy Cable

Ex 2. Disc Drive

Ex 3. Wireless Receiver

Ex 3. Optical Receiver

Signal **Attenuation**, **Noise** and **Distortion** incurred in the propagation channel require that the received signal be **Amplified**, **Filtered** and **Equalized** using **Analog** circuits.
• **Why Integrated?**

 • Larger integration → larger complexity

 • Lower parasitics → Higher speed

 • Lower cost

 • Moore’s Law: Number of transistors doubles every 18 months:

 • 1960: 25 μm Gate length

 • Today: 90 nm and 65 nm in production

 • 45 nm and 32 nm are in lab. 22nm and 16nm on roadmap.

• **Why CMOS?**

 • **Digital (Main Driver)**

 • Low Power, Simplicity, Scaling, Low cost

 • **Analog**

 • Integration with digital

 • Improved speed over years
Chapter 1

Analog Design

Levels of Abstraction

System Level

Circuit Level

Component Level

Don't Forget Variations

What is Analog Design?
CAD TOOLS FOR CIRCUIT DESIGN

• **Two Dominant Suppliers:**
 - Cadence 80% market share ✔️
 - Mentor Graphics 20% market share

• **Simulation:**
 - System Level: Matlab, SPW
 - High-Level (Behavioral): Verilog, Verilog_A, Verilog AMS
 - Low-Level (Electrical): SPICE, SPECTRE, ADS, Proprietary Tools

• **Cadence and Mentor Graphics Include tools for**
 - Schematic Capture
 - Simulation
 - Layout
Analog Design Space

Tradeoffs

- Analog Design is a Multi-Dimensional Optimization Problem.
- Improving one parameter always results in degradation of some others.
Basic MOS Device Physics

- Understanding Device Physics is Essential to Analog Design.

- MOS device is symmetric.

\[L_{\text{eff}} = L_{\text{drawn}} - 2L_D \]

<table>
<thead>
<tr>
<th>(L_{\text{drawn}})</th>
<th>(T_{\text{ox}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 (\mu \text{m})</td>
<td>5 nm</td>
</tr>
<tr>
<td>0.18 (\mu \text{m})</td>
<td>3.5 nm</td>
</tr>
<tr>
<td>0.13 (\mu \text{m})</td>
<td>2.2 nm</td>
</tr>
</tbody>
</table>
MOS is a four-terminal device.

Substrate (bulk) of an NMOS is connected to the lowest potential.

Substrate (bulk) of a PMOS is connected to the highest potential.

All p-n junctions are reverse biased.

Conduction takes place beneath gate, between source and drain.
Complementary MOS Process (CMOS):
MOS CHANNEL FORMATION

- **Cut Off**
 - $V_G \text{ GND}$

- **Depletion**
 - $V_G \text{ GND}$

- **Inversion**
 - $V_G \text{ } V_{TH} \text{ GND}$

Chapter 2
• Device turn-on is a gradual phenomenon.

• There exists several definitions for V_{TH}.

• One definition: when $V_G = V_{TH}$:

 density of electrons on the interfaced equals density of holes in the substrate

• V_{TH} increases with increasing the substrate doping.

Adjusting V_{TH} by ion implantation:

• P^+ layer increases V_{TH}
PMOS IN INVERSION STATE

- PMOS: Holes flow from Source to Drain.
- NMOS: Electrons flow from Source to Drain.
- Electrons have a higher Mobility. \(\rightarrow \) NMOS is faster than PMOS (~ 3 times).
MOS Symbols

Arrow indicates current flow from positive voltage to negative voltage polarity.
I-V CHARACTERISTICS

• Larger $V_{DS} \rightarrow$ Larger Longitudinal Field
• Larger $V_{GS} \rightarrow$ More Charge Carriers

More Current
I/V Characteristics (cont.)

\[I_D = -W C_{ox} [V_{GS} - V_{TH} - V(x)] \nu \]

Given \(\nu = \mu E \) and \(E(x) = -\frac{dV(x)}{dx} \)

\[I_D = W C_{ox} [V_{GS} - V_{TH} - V(x)] \mu_n \frac{dV(x)}{dx} \]

\[
\int_{x=0}^{L} I_D dx = \int_{V=0}^{V_{DS}} W C_{ox} \mu_n [V_{GS} - V_{TH} - V(x)] dV
\]

\[I_D = \mu_n C_{ox} \frac{W}{L} [(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2] \]
I-V CHARACTERISTICS: Triode Region

Triode Region:

\[V_{DS} < V_{GS} - V_{TH} \]

Almost Linear

\[I_D \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS} \]

\[
I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]
\]

- \(\mu_n \) [cm²/V·s] Electrons Mobility
- \(W \) [µm] Device Width
- \(L \) [µm] Device Length
- \(V_{DS} \)
- \(V_{GS} \)
- \(V_{TH} \)
- \(I_D \)
- \(C_{ox} \) Oxide Capacitance
- \(\varepsilon_{si} \) Oxide Permittivity
- \(t_{ox} \) Oxide Thickness

Chapter 2

ECE697BB/Oliaei 18
I-V CHARACTERISTICS: Saturation Region

\[V_{DS} = V_{GS} - V_{TH} \quad \text{(Pinch-off)} \]

\[V_{DS} > V_{GS} - V_{TH} \]

\[I_D = \frac{\mu_n C_{ox} W}{2} \left(V_{GS} - V_{TH} \right)^2 \]

\[L' \approx L \]
MOS OPERATION REGIMES

Both PMOS and NMOS:

- Triode Region: \[|V_{DS}| < |V_{GS} - V_{TH}| \]
- Pinch-Off: \[|V_{DS}| = |V_{GS} - V_{TH}| \]
- Saturation Region: \[|V_{DS}| > |V_{GS} - V_{TH}| \]

- In saturation, MOS behaves as a current source.
Transconductance in Saturation Region

\[I_D = \frac{\mu_n C_{ox} W}{2L} (V_{GS} - V_{TH})^2 \]

\[g_m = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_{V_{DS} \text{ constant}} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \]

\[g_m = \sqrt{2 \mu_n C_{ox} \frac{W}{L}} I_D = \frac{2I_D}{V_{GS} - V_{TH}} \]
DRAIN-SOURCE RESISTANCE IN TRIODE REGION

\[I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right) V_{DS} - \frac{1}{2} V_{DS}^2 \]

\[I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right) V_{DS}, \quad V_{DS} \ll 2(V_{GS} - V_{TH}) \]

Voltage-Controlled Resistance

\[\partial V_{DS} \quad 1 \quad \partial I_{DS} \]

\[R_{ON} = \frac{1}{\mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right)} \]
THRESHOLD VOLTAGE AND BODY EFFECT

$V_B < 0$ attracts holes and widens depletion region

→ Larger $V_G > 0$ to put opposite charge on gate
→ Larger $V_G > 0$ to create inversion
→ Higher V_{TH}

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{2\Phi_F} \right)$$

$0.3 < \gamma < 0.4$ Body effect coefficient

Φ_F Fermi level

Source-Bulk voltage
CHANNEL LENGTH MODULATION: SATURATION REGION

\[L' = L - \Delta L \]

\[\frac{1}{L'} = \frac{1}{L} \left(1 + \frac{\Delta L}{L}\right) = \frac{1}{L} \left(1 + \lambda V_{DS}\right) \]

\[I_D = \frac{\mu_n C_{ox} W}{2} \frac{V_{GS} - V_{TH}}{L} (V_{GS} - V_{TH})^2 \left(1 + \lambda V_{DS}\right) \]

\[g_{ds} = \frac{\partial I_{DS}}{\partial V_{DS}} = \lambda \frac{\mu_n C_{ox} W}{2} \frac{V_{GS} - V_{TH}}{L} (V_{GS} - V_{TH})^2 \approx \lambda I_{DS}, \quad \lambda \propto \frac{1}{L} \quad \Rightarrow \quad g_{ds} \propto \frac{I_{DS}}{L} \]
Key Units and Constants for MOS Transistors

\[1 \ \mu \text{m} = 10^{-4} \ \text{cm} = 10^{4} \ \text{Å} \]
\[1 \ \text{mil} = 25.4 \ \mu \text{m} = 0.0254 \ \text{mm} \]

Electron charge (magnitude): \(q = 1.6 \times 10^{-19} \ \text{C} \)
Permittivity of free space: \(\varepsilon_0 = 8.86 \times 10^{-14} \ \text{F/cm} \)
Permittivity of silicon: \(\varepsilon_\text{s} = \varepsilon_0 K_\text{s} = 1.04 \times 10^{-12} \ \text{F/cm} \); \(K_\text{s} = 11.7 \)
Permittivity of silicon dioxide: \(\varepsilon_\text{ox} = \varepsilon_0 K_\text{ox} = 3.5 \times 10^{-13} \ \text{F/cm} \); \(K_\text{ox} = \)
Oxide capacitance: \(C_\text{ox} = \varepsilon_\text{ox}/\mu_\text{ox} = 3.5 \times 10^{-13} \mu_\text{ox} \ \text{F/cm}^2 \)
Intrinsic carrier concentration: \(n_i = 1.5 \times 10^{10} \ \text{cm}^{-3} \), \(T = 300 \ \text{K} \)
Boltzmann’s constant: \(k = 1.38 \times 10^{-23} \ \text{J/K} \); \(kT/q \) (at \(T = 300 \ \text{K} \)) = 0.6
Electron mobility in Si (\(N_\text{imp} = 10^{17} \ \text{cm}^{-3} \), \(T = 300 \ \text{K} \)): 670 cm²/V · s
Hole mobility in Si (\(N_\text{imp} = 10^{17} \ \text{cm}^{-3} \), \(T = 300 \ \text{K} \)): 220 cm²/V · s

Body-effect coefficient: \(\gamma = \sqrt{2qK_\text{s}/N_\text{imp}} \)

\[\frac{f_\text{ox}^{\text{cm}}}{K_\text{ox}} = 1.67 \times 10^{-3} \gamma \sqrt{N_\text{imp}} \]

Bulk potential: \(\phi_p = -\frac{kT}{q} \ln \frac{N_\text{imp}}{n_i} = 0.026 \ln (0.67 \times 10^{-10} N_\text{imp}) \)

Drain–Current Relations for MOSFETs in Large-Signal Low-Frequency Operation

<table>
<thead>
<tr>
<th>Region of Operation</th>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triode region:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \(|v_\text{GS}| > |V_T|; \)
| \(|v_\text{DS}| < |v_\text{GS}| - |V_T|\) |
| \(i_D = \mu_n C_\text{ox} \frac{W}{L} (v_\text{GS} - V_T - \frac{v_\text{DS}}{2}) v_\text{DS}\) | \(-i_D = \mu_p C_\text{ox} \frac{W}{L} (v_\text{GS} - V_T - \frac{v_\text{DS}}{2}) v_\text{DS}\) |

| Saturation region | | |
| \(|v_\text{GS}| > |V_T|; \)
| \(|v_\text{DS}| > |v_\text{GS}| - |V_T|\) |
| \(V_T = (V_T)_{v_{gs}=0} + \gamma (\sqrt{2|\phi_p|} + v_{SB} - \sqrt{2|\phi_p|})\) | \(V_T = (V_T)_{v_{gs}=0} - \gamma (\sqrt{2|\phi_p|} - v_{SB} - \sqrt{2|\phi_p|})\) |

ECE697BB/Oliaei 25
SUBTHRESHOLD CONDUCTION

\[I_D = I_0 \exp \left(\frac{V_{GS}}{\zeta V_T} \right) \]

- For \(V_{GS} < V_{TH} \), there exists a weak inversion layer causing a small diffusion current.
- This “leakage” current causes increased power dissipation in digital circuits.
- To operate in weak inversion, transistor must be wide → low speed.
- Application: Ultra Low-Power design.
MOS LAYOUT

Contacts (Poly)

Gate (Metal)

Gate

Shared

Gate Contact
PARASITIC CAPACITANCES

- Junction capacitance increases **non-linearly** with reverse bias.
GAT-SOURCE AND GATE DRAIN CAPCITANCES

\[Q_{ch} \propto W C_{ox} [V_{GS} - V_{TH} - V(x)] \]

- \(C_{gs} \) is maximum in the saturation region
- Device is symmetric in the triode region

\[C_{GS} \approx \frac{2}{3} W L C_{ox} \]

\[C_{GS} = C_{GD} \approx \frac{1}{2} W L C_{ox} \]
LOW-FREQUENCY MOS SMALL-SIGNAL MODEL

\[V_{SB} = 0 \quad \text{and} \quad V_{SB} \neq 0 \]

\[r_o = \frac{1}{\lambda I_D} \quad : \text{Drain-source resistance} \]

\[g_{mb} = \frac{\partial I_D}{\partial V_{BS}} = g_m \frac{\gamma}{2\sqrt{2\Phi_F} + V_{SB}} \quad : \text{Bulk transconductance} \]

saturation
HIGH-FREQUENCY SMALL-SIGNAL MODEL

Saturation

Triode

Cut Off
Small-Signal Parameters of MOSFETS in Saturation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transconductance:</td>
<td>$g_m \triangleq \frac{\partial i_D}{\partial v_{GS}}$</td>
<td>$g_m \triangleq \frac{\partial i_D}{\partial v_{GS}}$</td>
</tr>
<tr>
<td>$g_m \triangleq \frac{\partial i_D}{\partial v_{GS}}$</td>
<td>$\frac{\mu_n C_{ox} W}{L} (v_{GS}^0 - V_T) = \sqrt{\frac{2 \mu_n C_{ox} W v_{DS}^0}{L}}$</td>
<td>$- \frac{\mu_p C_{ox} W}{L} (v_{DS}^0 - V_T) = - \sqrt{\frac{2 \mu_p C_{ox} W (-i_D^0)}{L}}$</td>
</tr>
<tr>
<td>Body-effect transconductance:</td>
<td>$g_{mb} \triangleq \frac{\partial i_D}{\partial v_{SB}}$</td>
<td>$g_{mb} \triangleq \frac{\partial i_D}{\partial v_{SB}}$</td>
</tr>
<tr>
<td>$g_{mb} \triangleq \frac{\partial i_D}{\partial v_{SB}}$</td>
<td>$- \frac{\gamma/2}{\sqrt{2 \phi_p + v_{SB}^0}} g_m$</td>
<td>$- \frac{\gamma/2}{\sqrt{2 \phi_p - v_{SB}^0}} g_m$</td>
</tr>
<tr>
<td>Drain conductance:</td>
<td>$g_D \triangleq \frac{\partial i_D}{\partial v_{DS}}$</td>
<td>$g_D \triangleq \frac{\partial i_D}{\partial v_{DS}}$</td>
</tr>
<tr>
<td>$g_D \triangleq \frac{\partial i_D}{\partial v_{DS}}$</td>
<td>$\frac{\lambda i_D^0}{1 + \lambda v_{DS}^0}$</td>
<td>$\frac{\lambda i_D^0}{1 - \lambda v_{DS}^0}$</td>
</tr>
<tr>
<td>Gate-to-source capacitance C_{gs}</td>
<td>$\frac{2}{3} W L C_{ox}$</td>
<td>$\frac{2}{3} W L C_{ox}$</td>
</tr>
<tr>
<td>Gate-to-drain capacitance C_{gd}</td>
<td>C_{gd} overlap</td>
<td>C_{gd} overlap</td>
</tr>
<tr>
<td>Source (or drain)-to-bulk capacitance $C_{sb} (C_{db})$</td>
<td>$\frac{C_{sb0}}{\sqrt{1 + v_{SB}^0/2 \phi_p}} \cdot \frac{C_{db0}}{\sqrt{1 + v_{DB}^0/2 \phi_p}}$</td>
<td>$\frac{C_{sb0}}{\sqrt{1 - v_{SB}^0/2 \phi_p}} \cdot \frac{C_{db0}}{\sqrt{1 - v_{DB}^0/2 \phi_p}}$</td>
</tr>
</tbody>
</table>
Terminal Capacitances of a MOSFET in the Three Main Regions of Operation

<table>
<thead>
<tr>
<th>Region of Operation</th>
<th>(C_{gs})</th>
<th>(C_{gd})</th>
<th>Capacitance</th>
<th>(C_{gb})</th>
<th>(C_{sb})</th>
<th>(C_{db})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff region</td>
<td>(WL_{ov}C_{ox})</td>
<td>(WL_{ov}C_{ox})</td>
<td>(WL'C_{ox})</td>
<td>(A_sC_{pn}(V_{sb}))</td>
<td>(A_dC_{pn}(V_{db}))</td>
<td></td>
</tr>
<tr>
<td>Saturation region</td>
<td>(WC_{ox}(L_{ov} + \frac{3}{2}L'))</td>
<td>(WL_{ov}C_{ox})</td>
<td>(\frac{1}{3}WL'C_{ox}C_{pn}(V_{db}))</td>
<td>(\frac{1}{3}WL'C_{pn}(V_{sb}))</td>
<td>(A_dC_{pn}(V_{db}))</td>
<td></td>
</tr>
<tr>
<td>Nonsaturated (triode)</td>
<td>(WL_{ov}C_{ox} +)</td>
<td>(WC_{ox}(L_{ov} + \frac{1}{2}L'))</td>
<td>(0)</td>
<td>(A_sC_{pn}(V_{sb})) + (\frac{2}{3}WL'C_{pn}(V_{sb}))</td>
<td>(A_dC_{pn}(V_{db})) + (\frac{2}{3}WL'C_{pn}(V_{db}))</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_{gd} \): *Gate-to-Drain Capacitance*. This is due to the overlap of the gate and the drain diffusion. It is a thin-oxide capacitance, and hence to a good approximation can be regarded as being voltage independent.

2. \(C_{gs} \): *Gate-to-Source Capacitance*. This capacitance has two components: \(C_{gs_{ov}} \), the gate-to-source thin-oxide overlap capacitance, and \(C_{gs}^* \), the gate-to-channel capacitance. The latter (in the saturation region) is around \(2/3C_{ox} \), where \(C_{ox} \) is the total thin-oxide capacitance between the gate and the surface of the substrate. In the triode region, \(C_{gs} = C_{ox} \). \(C_{gs} \) is nearly voltage independent in the saturation region.

3. \(C_{sb} \): *Source-to-Substrate Capacitance*. This capacitance also has two components: \(C_{sb_{ps}} \), the \(pn \) junction capacitance between the source diffusion and the substrate, and \(C_{sb}^* \), which can be estimated as two-thirds of the capacitance of the depletion region under the channel. The overall capacitance \(C_{sb} \) has a voltage dependence which is similar to that of an abrupt \(pn \) junction.

4. \(C_{db} \): *Drain-to-Substrate Capacitance*. This is a \(pn \) junction capacitance and is thus voltage dependent.

5. \(C_{gb} \): *Gate-to-Substrate Capacitance*. This capacitance is usually small in the saturation region; its value is around \(0.1C_{ox} \).
GATE ACCESS RESISTANCE

- Gate resistance effect is significant at RF.
COMMON-SOURCE with RESISTIVE LOAD

\[A_v = -g_m R_D \]
COMMON-SOURCE with RESISTIVE LOAD: Model

\[A_v = -g_m \, r_o \parallel R_D \]

\[R_D \rightarrow \infty \]

\[A_v = -g_m \, r_o \]
DIODE-CONNECTED MOS

\[(g_m + g_{mb})V_x + \frac{V_x}{r_o} = I_x\]

\[\frac{V_x}{I_x} = \frac{1}{g_m + g_{mb}} \parallel r_o \approx \frac{1}{g_m + g_{mb}}\]
COMMON-SOURCE STAGE with DIODE-CONNECTED LOAD

\[A_v = -g_{m1} \frac{1}{g_{m2} + g_{mb2}} = -\frac{g_{m1}}{g_{m2}} \frac{1}{1 + \eta} \]

\[A_v = -\sqrt{\frac{(W / L)_1}{(W / L)_2}} \frac{1}{1 + \eta} \]

- Gain independent of bias current
- Good gain accuracy: good matching

PMOS Diode-Connected Load

\[A_v = -\sqrt{\frac{u_n (W / L)_1}{u_p (W / L)_2}} \]

- Gain independent of bias current
- Gain set by two different types of transistor
COMMON-SOURCE with CURRENT SOURCE LOAD

Saturation

- Large Output Voltage Compared with Resistive Load
- All Transistors Need to be in Saturation for High Gain
- M1 sets the Minimum Output Voltage
- M2 Sets the Maximum Output Voltage

\[A_v = -g_m r_{o1} \parallel r_{o2} \]

High-Resistance Node

Triode

\[A_v = -g_m R_{ON2} \]

\[R_{ON2} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)^2 (V_{DD} - V_b - |V_{THP}|)} \]
COMMON-SOURCE WITH SOURCE DEGENERATIONS

\[G_m = \frac{g_m}{1 + g_m R_S} \]

\[A_v = -G_m R_D \]

\[A_v = \frac{-g_m R_D}{1 + g_m R_S} \]

Including Second-Order Effects

\[G_m = \frac{g_m r_o}{R_S + [1 + (g_m + g_{mb}) R_S] r_o} \]

\[A_v = -G_m R_D \parallel R_{OUT} \]
COMMON-SOURCE OUTPUT RESISTANCE

\[R_{OUT} = [1 + (g_m + g_{mb})r_o]R_S + r_o \]

\[R_{OUT} = r'_o \approx r_o [1 + (g_m + g_{mb})R_S] \]

\[A_v = -G_m R_D \parallel r'_o \]

Simplified Model

\[A_v = \frac{-g_m R_D}{1 + g_m R_S} = -\frac{R_D}{1/g_m + R_S} \]
SOURCE FOLLOWER

Small-Signal Model

Output Resistance

\[V_{out} = \frac{g_m R_S}{1 + (g_m + g_{mb}) R_S} \]

\[R_{out} = \frac{1}{g_m + g_{mb}} R_S \approx R_S \frac{1}{g_m} \]

- Source Follower Exhibits a high input resistance and a low output resistance.

Chapter 3
SOURCE FOLLOWER WITH FIXED BIAS CURRENT

- \(I_{d1} \), thus, \(V_{gs1} - V_{th1} \), are independent of \(V_{in} \).

Load Effect on Gain

Application: Buffering a High-Gain Stage

\[
A_v = \frac{1}{g_{mb}} \parallel \frac{1}{r_{o1} \parallel r_{o2} \parallel R_L} \frac{1}{g_m}
\]
COMMON-GATE

Gain

\[A_v = \frac{(g_m + g_{mb})r_o + 1}{r_o + (g_m + g_{mb})r_o R_S + R_S + R_D} \quad R_D \approx (g_m + g_{mb})R_D \]

Output Resistance

\[R_{out} = \left\{ \left[1 + (g_m + g_{mb})r_o \right] R_S + r_o \right\} \parallel R_D \]

Input Resistance

\[R_{in} = r_o \parallel \frac{1}{g_m} \parallel \frac{1}{g_{mb}} \]
CASCODE AMPLIFIER

\[A_V \approx g_{m1} \left[\left(r_{o1} r_{o2} (g_{m2} + g_{mb2}) \right) \parallel R_D \right] \]

\[Rout = \left\{ \left[1 + (g_{m2} + g_{mb2}) r_{o2} \right] r_{o1} + r_{o2} \right\} \parallel R_D \]

\[\approx \left[r_{o1} r_{o2} (g_{m2} + g_{mb2}) \right] \parallel R_D \]

Shielding Effect of Cascode

\[A_V \approx g_{m1} \left[(r_{o1} r_{o2} g_{m2}) \parallel (r_{o3} r_{o4} g_{m3}) \right] \]
DIFFERENTIAL VERSUS SINGLE-ENDED

Single-Ended Source

Differential Sources

Advantage: Reduced Sensitivity to Supply Noise

Supply Noise

Clock Noise
PSEUDO-DIFFERENTIAL AMPLIFIER

Disadvantage: Sensitive to Input Common-Mode Voltage
DIFFERENTIAL AMPLIFIER

Tail current: Rejects input common mode

Differential-Mode Gain

\[A_{\text{diff}} = \frac{V_{\text{out1}} - V_{\text{out2}}}{V_{\text{in1}} - V_{\text{in2}}} = g_m R_D \]

Common-Mode Gain

\[A_c = 0 \]
SMALL-SIGNAL ANALYSIS

Differential-Mode

\[A_d = -g_m R_D \]

Virtual ground

Common-Mode

\[A_c = -\frac{R_D / 2}{1/(2g_m) + R_{SS}} \]
$$\frac{V_x - V_y}{V_{in,CM}} = \frac{g_m R_D}{1 + 2g_m R_{SS}}$$

$$\frac{V_x - V_y}{V_{in,CM}} = \frac{(g_m - g_{m2}) R_D}{(g_m + g_{m2}) R_{SS} + 1}$$
DIFF. AMP WITH ACTIVE LOAD

\[A_d = -g_{mN} \left(g_{mP}^{-1} \parallel r_{oN} \parallel r_{oP} \right) \approx -\frac{g_{mN}}{g_{mP}} \]

\[A_d = -g_{mN} \left(r_{oN} \parallel r_{oP} \right) \]

\[A_d \approx g_{m1} \left[\left(g_{m3} r_{o3} r_{o1} \right) \parallel \left(g_{m5} r_{o5} r_{o7} \right) \right] \]
CURRENT MIRRORS

Reference Current

\[I_{\text{OUT}} \approx \frac{\mu_n C_{\text{ox}} W}{2L} \left(\frac{R_2}{R_2 + R_1} V_{\text{DD}} - V_{\text{TH}} \right)^2 \]

Sensitive to \(V_{\text{DD}}, V_{\text{th}}, W, L \)
CURRENT-BIASED DIFFERENTIAL AMPLIFIER
CASCODE CURRENT MIRROR

Low-Voltage Cascode
DIFFERENTIAL AMPLIFIER WITH ACTIVE CURRENT MIRROR

Large-Signal Operation

Chapter 5
DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

Small-Signal Analysis

\[I_{D1} = I_{D3} = I_{D4} = g_{m1,2} \frac{V_{in}}{2} \]
\[I_{D2} = -g_{m1,2} \frac{V_{in}}{2} \]

\[I_{out} = I_{D2} - I_{D4} = -g_{m1,2} V_{in} \]
\[\Rightarrow G_m = g_{m1,2} \]

\[A_v \approx G_m R_{out} \]

\[R_{out} \approx r_{o2} \parallel r_{o4}, \quad (2r_{o1,2} >> \frac{1}{g_{m3}} \parallel r_{o3}) \]
COMMON-MODE ANALYSIS

Common-Mode Gain

\[A_{CM} \approx \frac{-1}{1 + 2g_{m1,2}R_{SS} g_{m3,4}} \]

Common-Mode Rejection Ratio

\[CMRR = \frac{A_{DM}}{A_{CM}} = g_{m3,4}(r_{o1,2} \parallel r_{o3,4})(1 + 2g_{m1,2}R_{SS}) \]
FREQUENCY RESPONSE OF AMPLIFIERS

Single-Pole Passive RC

\[
\frac{V_o(s)}{V_i(s)} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + RCS} = \frac{1}{1 + s/\omega_p}
\]

\[\omega_p = \frac{1}{2\pi RC} \quad : \text{pole frequency}\]

\[s = j\omega \quad \Rightarrow \quad \frac{V_o(\omega)}{V_i(\omega)} = \frac{1}{1 + jRC\omega} \quad \Rightarrow \quad \left|\frac{V_o(\omega)}{V_i(\omega)}\right|^2 = \frac{1}{1 + (RC\omega)^2}\]

Miller’s Theorem

\[A_v = \frac{V_y}{V_x} \quad \Rightarrow \quad Z_1 = \frac{Z}{1 - A_v} \quad Z_2 = \frac{Z}{1 - A_v^{-1}}\]
AMPLIFIER FREQUENCY RESPONSE ANALYSIS

Capacitance Multiplication

\[C_1 = C_F (1 - A_v) \quad C_2 = C_F (1 - A^{-1}_v) \approx C_F \]

Association of Poles and Nodes

\[
\frac{V_{out}(s)}{V_{in}(s)} = \frac{A_1}{1 + R_s C_{in} \omega} \frac{A_2}{1 + R_1 C_N \omega} \frac{1}{1 + R_2 C_p \omega}
\]
COMMON-SOURCE FREQUENCY RESPONSE

Approximate Analysis (Miller)

\[
f_{p,\text{in}} = \frac{1}{2\pi R_S \left[C_{GS} + (1 + g_m R_D) C_{GD} \right]}
\]

\[
f_{p,\text{out}} = \frac{1}{2\pi \left[(C_{GD} + C_{DB}) R_D \right]}
\]

Exact Analysis

\[
\frac{V_o}{V_i} = \frac{(sC_{GD} - g_m) R_D}{s^2 R_S R_D (C_{GS} C_{GD} + C_{GS} C_{SB} + C_{GD} C_{DB}) + s \left[R_S (1 + g_m R_D) C_{GD} + R_S C_{GS} + R_D (C_{GD} + C_{DB}) \right] + 1}
\]

\[\omega_z = \frac{g_m}{C_{GD}}\]
SOURCE FOLLOWER OR COMMON DRAIN

\[
\frac{v_O}{v_i} = \frac{g_m + sC_{GS}}{s^2 R_S (C_{GS} C_L + C_{GS} C_{GD} + C_{GD} C_L) + s(g_m R_S C_{GD} + C_{GD} + C_{GS}) + g_m}
\]

\[
f_{p1} \approx \frac{g_m}{2\pi(g_m R_S C_{GD} + C_L + C_{GS})}, \text{ assuming } f_{p2} >> f_{p1}
\]

\[
= \frac{1}{2\pi \left(R_S C_{GD} + \frac{C_L + C_{GS}}{g_m}\right)}
\]
SOURCE FOLLOWER INPUT IMPEDANCE

At low frequencies, \(g_{mb} \gg |sC_L| \)

\[
Z_{in} \approx \frac{1}{sC_{GS}} \left(1 + \frac{g_m}{sC_{GS}}\right) \frac{1}{g_{mb} + sC_L}
\]

\[
\therefore \ C_{in} = C_{GS}g_{mb} / (g_m + g_{mb}) + C_{GD} \quad (\text{same as Miller})
\]

At high frequencies, \(g_{mb} \ll |sC_L| \)

\[
Z_{in} \approx \frac{1}{sC_{GS}} + \frac{1}{sC_L} + \frac{g_m}{s^2C_{GS}C_L}
\]
SOURCE FOLLOWER OUTPUT IMPEDANCE

\[Z_{OUT} = \frac{V_X}{I_X} = \frac{sR_S C_{GS} + 1}{g_m + sC_{GS}} \]

\[\approx \frac{1}{g_m}, \text{ at low frequencies} \]
\[\approx R_S, \text{ at high frequencies} \]

\[R_2 = \frac{1}{g_m}, \quad R_1 = R_S - \frac{1}{g_m}, \quad L = \frac{C_{GS}}{g_m} \left(R_S - \frac{1}{g_m} \right) \]

Output ringing due to \(C_L \) and inductive component of output impedance.
CASCODE STAGE

\[f_{pA} = \frac{1}{2\pi R_S \left[C_{GS1} + C_{GD1} \left(1 + \frac{g_{m1}}{g_{m2} + g_{mb2}} \right) \right]} \]

\[f_{pX} = \frac{g_{m2} + g_{mb2}}{2\pi \left(C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2} \right)} \]

\[f_{pY} = \frac{1}{2\pi R_D \left(C_{DB2} + C_L + C_{GD2} \right)} \]
DIFFERENTIAL PAIR

\[f_{p1} \approx \frac{1}{2\pi (r_{oN} \parallel r_{oP}) C_L} \]

\[f_{p2} = \frac{g_{mP}}{2\pi C_E} \]

\[f_Z = 2f_{p2} = \frac{2g_{mP}}{2\pi C_E} \]
FEEDBACK PRINCIPLES

\[Y(s) = H(s) [X(s) - G(s)Y(s)] \]
\[\frac{Y(s)}{X(s)} = \frac{H(s)}{1 + G(s)H(s)} \]

- Gain Desensitization

\[A_{CL} = \frac{Y}{X} = \frac{A}{1 + A\beta} = \frac{1}{\beta} \cdot \frac{A\beta}{1 + A\beta} \approx \frac{1}{\beta} \]

- Example

\[A_{CL} = \frac{1}{\beta} \cdot \frac{A\beta}{1 + A\beta} \]
\[\frac{1}{\beta} = \frac{R_1 + R_2}{R_2} \]

\[A_{CL} \approx 1 + \frac{R_2}{R_1} \]
FEEDBACK EFFECT ON BANDWIDTH

\[
A_{cl} = \frac{A_0}{1 + j \frac{f}{f_p}}
\]

\[
A_{CL} = \frac{1}{\beta} \frac{A_0 \beta}{(1 + A_0 \beta)(1 + j \frac{f}{f_p})(1 + A_0 \beta)}
\]
FEEDBACK EFFECT ON OUTPUT IMPEDANCE

• Output Impedance

\[I_X = \frac{V_X - V_M}{R_{out}} = \frac{V_X - (-\beta A_0 V_X)}{R_{out}} \]

\[\frac{V_X}{I_X} = R_{out,CL} = \frac{R_{out}}{1 + \beta A_0} \]

• Input Impedance

\[\frac{V_X}{I_X} = R_{in,CL} = R_{in} (1 + \beta A_0) \]
AMPLIFIER TYPES
OP-AMP

Single-Ended Output

Differential Output

Ideal Op-Amp

\[A_v \rightarrow \infty \]

\[R_{in} \rightarrow \infty \]

\[R_{out} = 0 \]
SINGLE-STAGE OP-AMP

- OP-AMP as a voltage buffer
CASCODE OP-AMP: SINGLE-STAGE

Telescopic Cascode

- Higher Gain
- Reduced Output Swing
- Output swing dependent on input swing
IMPROVED SINGLE-ENDED CASCODE OP-AMP

Low-Voltage Cascode Current Mirror
TRIPLE CASCODE

- $A_v \text{ app. } (g_m r_o)^{3/2}$
- Severely Limited Output Swing
- Complex biasing
FOLDED-CASCODE AMPLIFIER

PMOS Input

+ High Gain
+ Output Swing Decoupled from Input Swing
- Reduced Speed

NMOS Input
FOLDED-CASCODE OP-AMP

\[|A_v| \approx g_{m1} \left[(g_{m3} + g_{mb3}) r_{o3} \right] r_{o1} \]

Cascode Gain
FOLDED-CASCODE OP-AMP

\[|A_v| \approx g_{m1} \left\{ \left[\left(g_{m3} + g_{mb3} \right) r_o3 \left(r_o1 \parallel r_o5 \right) \right] \left[\left(g_{m7} + g_{mb7} \right) r_o7 r_o9 \right] \right\} \]
TELESCOPIC VERSUS FOLDED CASCODE

Non-dominant Pole

Non-dominant Pole
FOLDED-CASCODE OP-AMP IMPLEMENTATION

Devices in Signal Path

Current-Mirror

signal
SINGLE-ENDED TWO-STAGE OP-AMPS

+ Large Voltage Swing
- Reduced Speed

Single-Ended Output Two-Stage Op Amp

Active Current Mirror
FULLY-DIFFERENTIAL TWO-STAGE OP-AMPS

+ Larger Voltage Swing
+ Better Noise Performance

Ex.1

Ex.2
OUTPUT IMPEDANCE ENHANCEMENT USING FEEDBACK

\[R_{out} = A_1 g_m 2 r_{o2} r_{o1} \]

Disadvantage: Low swing or Large Supply Voltage
DIFFERENTIAL GAIN BOOSTING

High-Supply

Low-Supply
OP-AMP USING DIFFERENTIAL GAIN BOOSTING

Enhanced Telescopic Cascode

Enhanced Folded Cascode
COMPARISON

Performance Comparison of OP-AMP Topologies

<table>
<thead>
<tr>
<th>Gain</th>
<th>Output Swing</th>
<th>Speed</th>
<th>Power Dissipation</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopie</td>
<td>Medium</td>
<td>Highest</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Folded-Cascode</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Two-Stage</td>
<td>High</td>
<td>Highest</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Gain-Boosted</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>
COMMON-MODE FEEDBACK

Low-Gain Amplifier

High-Gain Amplifier

- Output common-mode voltage in a low-gain diff-pair is well-defined.
- Output common-mode voltage in a low-gain diff-pair is ill-defined.
COMMON-MODE FEEDBACK PRINCIPLE

Auxiliary amplifier sets the output common-mode.

\[\frac{V_{o1} + V_{o2}}{2} = V_{\text{ref}} = V_{CM} \]

\[V_{CM} = V_{\text{ref}} \]
COMMON-MODE SENSING METHODS

Resistive

Buffered-Resistive
FOLDED-CASCADE WITH COMMON-MODE CONTROL

(a)

(b)
SIMPLIFIED CMFB

- M_7 and M_8 in Triode.

- Advantages:
 - Simple, low power

- Disadvantages:
 - Low Accuracy
 - Reduced Output Swing due to M_7 and M_8
 - Increased Output Parasitic Capacitance

- CMFB with improved output swing:
IMPROVED CMFB

Through Symmetry:

\[V_{\text{ref}} = V_{\text{CM}} \]

Complete Implementation
TRANSPARENT LARGE-SIGNAL: SLEWING

Slew rate:

\[SR = \frac{dV_{out}(t)}{dt} = \frac{I_{SS}}{C_L} \]
SLEWING IN TELESCOPIC OP-AMP

Fully-Differential:

\[SR = \frac{dV_{out}(t)}{dt} = \frac{2I_{SS}}{C_L} \]
FOLDED-CASCODE SLEWING

Fully-Differential:

\[SR = \frac{dV_{out}(t)}{dt} = \frac{2I_{SS}}{C_L} \]