Homework Assignment 1

Due before class Monday, February 8.

1. Consider how the de Broglie’s suggestion might explain some properties of the hydrogen atom.
 a. Show that the assumption
 \[p = mυ = \frac{h}{\lambda} \]
 and the ‘quantization condition’ that the length of a circular orbit be an integer multiple of the length of the electron wavelength (that is: \(n\lambda = 2\pi r \), where \(r \) is the radius of the orbit and \(n \) an integer) imply that only discrete orbits are allowed.
 b. Calculate the total energy (kinetic plus potential) of the electron in each orbit characterized by \(n \).

Hint: In part a find two equations describing the balance between the centrifugal and the Coulomb (centripetal) force. Solve for the radius \(r \) and for the angular velocity \(\omega \). Now, in b insert these expressions into the formulae for the kinetic and potential energy.

2. Let’s consider the tunneling problem (Notes, page 7) with the potential barrier:

\[
V(z) = \begin{cases}
0 & \text{for } z \leq 0 \\
V > 0 & \text{for } 0 < z < L \\
0 & \text{for } z \geq L \end{cases}
\]

Write the wavefunction as:

\[
\psi(z) = \begin{cases}
Ae^{ikz} + Be^{-ikz} & \text{for } z \leq 0 \\
Ce^{\kappa z} + De^{-\kappa z} & \text{for } 0 < z < L \\
Fe^{ikz} & \text{for } z \geq L
\end{cases}
\]

with \(k = (2mE)^{1/2}/\hbar, \kappa = [2m(V - E)]^{1/2}/\hbar \).
 a. Write the system of four equations expressing the continuity of the wavefunction and its derivative at \(z = 0 \)
and at $z = L$.

b. Find the transmission coefficient, $T = |F|^2/|A|^2$. There’s no need to solve the full system. Be creative. Hint: Multiply the equation expressing continuity of ψ at $z = 0$ by ik and add and subtract it from the equation expressing continuity of the derivatives at $z = 0$. Do a similar thing with the other two equations (by multiplying one by κ). Now it should be relatively easy to solve for F in terms of A alone. This gives you T.

3. From the Schrödinger equation derive the continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot S = 0,$$

where $\rho = |\Psi|^2$ is the ‘probability density’ and $S = \frac{i\hbar}{2m}[\Psi \nabla \Psi^* - \Psi^* \nabla \Psi]$ is the ‘probability density current’.

4. The Wentzel-Kramers-Brillouin (WKB) approximation to solve the Schrödinger equation consists in writing the solution of the time-independent problem:

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x),$$

as

$$\psi(x) \approx \frac{1}{k^{1/2}} \exp \left\{ i \int x k(x') \, dx' \right\},$$

where $k(x) = \{2m[E - V(x)]\}^{1/2}/\hbar$. This is a good approximation if the potential $V(x)$ varies slowly (that is, it does not change much compared to the electron energy E when x varies over several de Broglie wavelengths). If $E - V(x) < 0$, the WKB wavefunction becomes

$$\psi(x) \approx \frac{1}{k^{1/2}} \exp \left\{ - \int x \kappa(x') \, dx' \right\},$$

where now $\kappa(x) = \{2m[V(x) - E]\}^{1/2}/\hbar$.

Let’s now ignore the factor $k^{-1/2}$ (which simply ensures continuity of probability current). Consider now the
previous tunneling problem (problem 2) and identify the WKB approximation to the transmission coefficient as:

\[
T_{WKB} = |\psi(L)|^2 = \exp\left\{ -2 \int_0^L \kappa(x') \, dx' \right\} .
\] (1)

Compare \(T_{WKB}\) with the 'exact' transmission coefficient \(T\) of the previous tunneling problem (problem 2) in the limit in which \(\kappa L >> 1\).

5. Calculate the matrix element between two wavefunctions of the form

\[
\psi(k, r) = \frac{1}{V^{1/2}} e^{i k \cdot r} \quad \text{and} \quad \psi(k', r) = \frac{1}{V^{1/2}} e^{i k' \cdot r},
\]

and the perturbation potentials of the form:

a. \(H \propto e^{i q \cdot r}\)

b. \(H \propto \delta(r)\)

c. \(H \propto |r|^{-2}\)

d. \(H \propto e^{-|r|}/r_0\)

Polar coordinates are useful in c and d.

6. Show in detail the equivalence between the two formulations of Bloch theorem:

\[
\psi(k, r + R_l) = e^{i k \cdot R_l} \psi(k, r) ,
\] (2)

and:

\[
\psi(k, r) = e^{i k \cdot r} u_k(r) ,
\] (3)

where \(u_k(r)\) is periodic:

\[
u_k(r + R_l) = u_k(r).
\]

7. a. Find the reciprocal lattice vectors of the fcc lattice. As fundamental translation vectors use

\[
a = \frac{a}{2}(\hat{x} + \hat{y}) , \quad b = \frac{a}{2}(\hat{y} + \hat{z}) , \quad c = \frac{a}{2}(\hat{z} + \hat{x}).
\]
b. Find the volume of the BZ.