Homework 6

Due before class Wednesday, November 25, 2009. Assume room temperature \(T = 300 \) K in all problems

1. (a) Using the figures on pages 133 and 134 of the Lecture Notes, Part II, as a guide, sketch the band diagram of an MOS capacitor with an \(n \)-type Si substrate in
 i) accumulation, ii) at flat band condition, and iii) at the onset of strong inversion (that is, \(\psi_s = 2 \psi_B \)). Assume an Al gate with electron affinity \(e\phi_M = 3.0 \) eV, use for Si the work-function \(e\chi = 3.2 \) eV, and assume the \(n \)-type substrate to be doped with \(N_D = 3 \times 10^{17} \) donors/cm\(^3\).

(b) What is the value of the flatband voltage \(V_{FB} \) and of the threshold voltage \(V_{T0} \) (see Eq. (247) of the Notes, Part III)?

(c) What is the value of the depletion capacitance \(C_D \) at the onset of strong inversion?

2. Assuming an oxide thickness \(t_{ox} \) of 5 nm and a gate area of 100 \(\mu m^2 \), sketch the capacitance-voltage \((C - V) \) characteristics of the MOS capacitor of problem 1, as in the figure at page 140 of the Lecture Notes. Recall that this capacitor is on an \(n \)-type substrate!

3. Consider a Si \(n \)MOSFET with the following parameters:
 substrate doping (\(p \)-type): \(N_A = 5 \times 10^{16} \) cm\(^{-3} \)
 channel length \(L = 0.5 \) \(\mu m \)
 gate width \(W = 5 \) \(\mu m \)
 electron mobility \(\mu_n = 600 \) cm\(^2\)/Vs
 oxide thickness \(t_{ox} = 15 \) nm
 flatband voltage \(V_{FB} = 0 \).
 Using the simplified model of the Lecture Notes, pages 159-162, especially Eq. (255), plot as accurately as you can the \(I_D - V_D \) characteristics of the device assuming that the source contact is grounded (that is, \(V_S = 0 \)). More specifically, plot \(I_D \)-vs-\(V_D \) for \(V_G - V_{T0} = 0.0, 0.5, 1.0, 1.5, \) and \(2.0 \) V for \(V_D \) ranging from 0 to 5 V. Indicate as best as you can the separation between the linear and saturated region by computing \(V_{D, sat} \) for the various values of \(V_G - V_{T0} \). Also indicate the value of the threshold voltage \(V_{T0} \).
4. As in problem 3 above, plot the same $I_D - V_D$ characteristics, but now account for the degradation of the electron mobility with increasing V_G via Eq. (298) of the Lecture Notes. To do this, just replace μ_n in Eq. (255) with μ_{eff} given by Eq. (298). Use a value of K such that $K C_{ox}/(2\epsilon_s) = 0.5 \, \text{V}^{-1}$.

5. Consider a Si nMOSFET with the following parameters:

 - substrate doping (p-type): $N_A = 5 \times 10^{16} \, \text{cm}^{-3}$
 - channel length $L = 1.0 \, \mu\text{m}$
 - gate width $W = 10 \, \mu\text{m}$
 - electron mobility $\mu_n = 600 \, \text{cm}^2/\text{Vs}$
 - oxide thickness $t_{ox} = 4 \, \text{nm}$
 - threshold voltage $V_{T0} = 1 \, \text{V}$

 Using, as in the previous problem, the simplified model of the Lecture Notes, pages 159-162, especially Eq. (255), calculate the width of a similar pMOSFET giving the same saturated current for the same gate overdrive (that is, at the same value of $|V_G - V_{T0}|$). Assume for the hole mobility a value of $\mu_p = 200 \, \text{cm}^2/\text{Vs}$. If you wish, you may assume also for the threshold voltage of the pMOSFET the value of $-1 \, \text{V}$. Recall that in dealing with the pFET all polarities (V_D and V_G) are switched.

 Do you really need to know the entire set of parameters characterizing the devices in order to reach your answer?