Chapter 2: Computer-System Structures

- Last lecture: why study operating systems?
- Purpose of this lecture: general knowledge of the structure of a computer system and understanding technology trends
- Key issues in a computer system
 - General System Architecture (CPU, $s,$ MM, disk, bus, IO devices and controllers), Uni vs. Multi Processors
 - I/O Structure (I/O interrupts, IO methods, HW support, e.g., DMA)
 - Storage Structure (CPU regs, $, MM, disk)
 - Storage Hierarchy (why? expensive→cheap; small→large)
 - Hardware Protection (user/system, IO protection, Mem protection)

Hmm ... this looks like a Computer System?

- Figure by courtesy of Anant Agarwal, MIT
Uniprocessor Computer Architecture

MP Example: Intel Pentium Pro Quad

- Multiprocessor
- All coherence and multiprocessing glue in processor module
- Highly integrated, targeted at high volume
Example: SUN Enterprise

- 16 cards of either type: processors + memory, or I/O
- All memory accessed over bus, so symmetric multiproc. (SMP)
- Higher bandwidth, higher latency bus

Example: Cray T3E

- Multiprocessor system
- Scale up to 1024 processors, 480MB/s links
Let’s look at trends, 1st Technology Trends

The natural building block for multiprocessors is now also about the fastest!

General Technology Trends

• Microprocessor performance increases 50% - 100% per year
• Transistor count doubles every 3 years
• DRAM size quadruples every 3 years
• Huge investment per generation is carried by huge commodity market

• Not that single-processor performance is plateauing, but that parallelism is a natural way to improve it.
Clock Frequency Growth Rate

- 30% per year

Transistor Count Growth Rate

- 100 million transistors on chip by early 2000’s A.D.
- Transistor count grows much faster than clock rate
 - 40% per year, order of magnitude more contribution in 2 decades
Architectural Trends: Bus-based MPs

- Micro on a chip makes it natural to connect many to shared memory – dominates server and enterprise market, moving down to desktop
- Faster processors began to saturate bus, then bus technology advanced – today, range of sizes for bus-based systems, desktop to large servers

Bus Bandwidth
Phases in VLSI Generation

- How good is instruction-level parallelism?
- Thread-level needed in microprocessors?

Economics

- Commodity microprocessors not only fast but CHEAP
 - Development cost is tens of millions of dollars (5-100 typical)
 - BUT, many more are sold compared to supercomputers
 - Crucial to take advantage of the investment, and use the commodity building block
 - Exotic parallel architectures no more than special-purpose
- Multiprocessors being pushed by software vendors (e.g. database) as well as hardware vendors
- Standardization by Intel makes small, bus-based SMPS commodity
- Desktop: few smaller processors versus one larger one? Multiprocessor on a chip is here.
Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an interrupt.

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt.
- A trap is a software-generated interrupt caused either by an error or a user request.
- An operating system is interrupt driven.
Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter.
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Time Line For a Single Process Doing Output
I/O Structure

- After I/O starts, control returns to user program only upon I/O completion.
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access).
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.
- After I/O starts, control returns to user program without waiting for I/O completion.
 - System call – request to the operating system to allow user to wait for I/O completion.
 - Device-status table contains entry for each I/O device indicating its type, address, and state.
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.

Two I/O Methods

Syncrhonous

Asynchronous
Device-Status Table

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds.
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
- Only one interrupt is generated per block, rather than the one interrupt per byte.
Storage Structure

- Main memory – only large storage media that the CPU can access directly.
- Secondary storage – extension of main memory that provides large nonvolatile storage capacity.
- Magnetic disks – rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into *tracks*, which are subdivided into *sectors*.
 - The *disk controller* determines the logical interaction between the device and the computer.

Moving-Head Disk Mechanism
Storage Hierarchy

- Storage systems organized in hierarchy.
 ✦ Speed
 ✦ Cost
 ✦ Volatility
- Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.

Storage-Device Hierarchy
Caching

- Use of high-speed memory to hold recently-accessed data.
- Requires a cache management policy.
- Caching introduces another level in storage hierarchy. This requires data that is simultaneously stored in more than one level to be consistent.
- Caching is typically transparent to the OS

Migration of A From Disk to Register
Hardware Protection

- Dual-Mode Operation
- I/O Protection
- Memory Protection
- CPU Protection

Dual-Mode Operation

- Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly.
- Provide hardware support to differentiate between at least two modes of operations.
 1. User mode – execution done on behalf of a user.
 2. Monitor mode (also kernel mode or system mode) – execution done on behalf of operating system.
Dual-Mode Operation (Cont.)

- **Mode bit** added to computer hardware to indicate the current mode: monitor (0) or user (1).
- When an interrupt or fault occurs hardware switches to monitor mode.

![Diagram](image)

Privileged instructions can be issued only in monitor mode.

I/O Protection

- All I/O instructions are privileged instructions.
- Must ensure that a user program could never gain control of the computer in monitor mode (i.e., a user program that, as part of its execution, stores a new address in the interrupt vector).
Use of A System Call to Perform I/O

Memory Protection

- Must provide memory protection at least for the interrupt vector and the interrupt service routines.
- In order to have memory protection, add two registers that determine the range of legal addresses a program may access:
 - **Base register** – holds the smallest legal physical memory address.
 - **Limit register** – contains the size of the range
- Memory outside the defined range is protected.
Use of A Base and Limit Register

Hardware Address Protection
Hardware Protection

- When executing in monitor mode, the operating system has unrestricted access to both monitor and user’s memory.
- The load instructions for the base and limit registers are privileged instructions.

CPU Protection

- *Timer* – interrupts computer after specified period to ensure operating system maintains control.
 - Timer is decremented every clock tick.
 - When timer reaches the value 0, an interrupt occurs.
- Timer commonly used to implement time sharing.
- Time also used to compute the current time.
- Load-timer is a privileged instruction.
Network Structure

- Local Area Networks (LAN)
- Wide Area Networks (WAN)

Local Area Network Structure
Wide Area Network Structure