If you are using FEAST, please consider citing one or more publications below in your work.

Main Reference

  • E. Polizzi,
    Density-Matrix-Based Algorithms for Solving Eigenvalue Problems,
    Phys. Rev. B. Vol. 79, 115112 (2009) [Article link] [Preprint]

Specific References

  • Mathematical analysis and convergence studies

    P. T. P. Tang, E. Polizzi,
    FEAST as a Subspace Iteration EigenSolver Accelerated by Approximate Spectral Projection,
    SIAM Journal on Matrix Analysis and Applications (SIMAX), 35, 354-390 (2014) [Article link][Preprint]

  • Non-Hermitian solver

    J. Kestyn, E. Polizzi, P. T. P. Tang,
    FEAST Eigensolver for Non-Hermitian Problems,
    arxiv.org/abs/1203.4031 (2015) [Preprint]

  • Hermitian solver using Zolotarev quadrature

    S. Güttel, E. Polizzi, P. T. P. Tang, G. Viaud,
    Optimized Quadrature Rules and Load Balancing for the FEAST Eigenvalue Solver,
    SIAM Journal on Scientific Computing (SISC), to appear (2015)[Preprint]

  • Eigenvalue count using stochastic estimates

    E. Di Napoli, E. Polizzi, Y. Saad
    Efficient Estimation of Eigenvalue Counts in an Interval,
    arxiv.org/abs/1308.4275 (2015) [Preprint]

FEAST Framework applied to First-Principle Calculations

  • The self-consistent problem

    B. Gavin, E. Polizzi
    Non-linear Eigensolver-Based Alternative to Traditional SCF Methods
    J. Chem. Phys. 138, 194101 (2013) [Article link] [Preprint]

  • All-Electron Calculations

    A. Levin, D. Zhang, E. Polizzi
    FEAST Fundamental Framework for Electronic Structure Calculations: Reformulation and Solution of the Muffin-tin Problem
    Computer Physics Communications, V183, I11, pp2370-2375 (2012) [Article link] [Preprint]

  • Time-Domain Propagation

    Z. Chen, E. Polizzi
    Spectral-Based Propagation Schemes for Time-Dependent Quantum Systems with Applications to Carbon Nanotubes
    Phys. Rev. B, Vol. 82, 205410 (2010) [Article link] [Preprint]