ECE609 Spring07
 Homework 3
 Physics of semiconductors- PN junctions

1 Semiconductors Fundamentals (40pts)

15pt A GaAs semiconductor is doped with $2.3 * 10^{17}$ donors per cm^{-3}, calculate the electron and hole concentration at equilibrium. Calculate $\left(E_{c}-E_{F}\right)$ without using a formula involving N_{c}. What is the occupancy of an electron inside the conduction band with an energy $E_{1}-E_{c}=0.0693 \mathrm{eV}$ and $E_{2}-E_{c}=0.277 \mathrm{eV}$.

25pt A 9 nm thick layer of GaAs is sandwiched between two larger bandgap AlGaAs layers (see Fig. 1). Find the allowed energy levels (in eV) within the finite square well potential formed in the conduction band and in the valence band (use $E_{g}=2.03 \mathrm{eV}$ for AlGaAs). You will make use of the formula derived for the infinite well potential case (no derivation is required). Sketch a graph to summarize the obtained results.

Figure 1: AlGaAs/GaAs/AlGaAs

2 Theory of Electrical Conduction (20pts)

5pt Electrons in undoped gallium arsenide have a mobility of $8,800 \mathrm{~cm}^{2} / V . s$. Calculate the average time in picosecond between collisions (we will use $0.067 m_{0}$ for the effective mass of the electrons). Calculate the distance traveled between two collisions in nanometer (also called the mean free path). Use an average velocity of $10^{7} \mathrm{~cm} / \mathrm{s}$.

5pt A piece of silicon is doped with boron ($N_{a}=10^{17} \mathrm{~cm}^{-3}$). Calculate the resistivity of this P-type semiconductor (we consider $317 \mathrm{~cm}^{2} / V . s$ for the mobility).

10pt The hole density in an N-type silicon wafer ($N_{d}=10^{17} \mathrm{~cm}^{-3}$) decreases linearly from $10^{14} \mathrm{~cm}^{-3}$ to $10^{12} \mathrm{~cm}^{-3}$ between $x=0$ and $x=1.5 \mu \mathrm{~m}$. Calculate the hole diffusion current density at $T=300 \mathrm{~K}$ (the hole mobility is equal to $317 \mathrm{~cm}^{2} / V . s$).

$3 \quad$ P-N junctions [40pt]

5pt A semiconductor diode is fabricated from GaAs with $N_{a}=10^{12} \mathrm{~cm}^{-3}$ on the p-side and $N_{d}=$ $10^{9} \mathrm{~cm}^{-3}$ on the n -side. What are the built-in potential and width of the depletion region (in $\mu \mathrm{m}$)?

15 pt Consider the same P-N junction than above. If the reverse saturation current of this ideal diode is measured to be $J_{s}=10^{-12} \mathrm{~A} / \mathrm{m}^{2}$, what are the forward currents for applied biases of 0.5 V and 1.0 V . What is the excess electron concentration at the edge of the P-side for both cases ?

15 pt Sketch the variation of the conduction band, valence band, Fermi-level, Intrinsic Fermi-level of the P-N junction. Sketch the direction of the drift and diffusion currents both for the electrons and holes.

5 pt We set $N_{d}=10^{19} \mathrm{~cm}^{-3}, l_{p}=1.03 \mu m$ (size of the depletion region in the P-region), what is the value of l_{n} if we consider $N_{a}=10^{15}$? Comment.

