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HOMEWORK 2 - SOLUTIONS
Energy Band Theory and Semiconductor Fundamentals

1 Energy Band Theory

• (ii) to (i): Ψk(r + R) = eikReikruk(r + R) = eikReikruk(r) = eikRΨk(r)

(i) to (ii): we setuk(r) = e−ikrΨk(r), thenuk(r + R) = e−ikre−ikRΨk(r + R) = uk(r), since
e−ikRΨk(r + R) = Ψk(r).

•
∇(eikruk(r)) = ikeikruk(r) + eikr∇uk(r)

∆(eikruk(r)) = −k2eikruk(r)+ikeikruk(r)+ikeikruk(r)+eikr∆uk(r) = eikr(−k2+2ik∇+∆)uk(r)

Finally, we obtain the expression we saw in class.

2 Energy band theory using the LCAO method

1.

Ψ(x) =
+∞∑

n=−∞
cnvn(x)

2. We replace the expression ofΨ(x) in the Schr̈odinger equation then we multiply byvm(x) and inte-
grate over all the real space (projection). We get:∑

n

cn(
∫

vm(x)Hvn(x)dx) = E
∑

n

cn(
∫

vm(x)vn(x)dx),

where the second term is equal to zero but form = n. Since we consider only the coupling between
first neighbors, in the first term, the sum over n is different of zero only forn = m,m + 1,m− 1.

cm(
∫

vm(x)Hvm(x)dx)+ cm+1(
∫

vm(x)Hvm+1(x)dx)+ cm−1(
∫

vm(x)Hvm−1(x)dx) = Ecm,

or (m ≡ n):
E0cn −Acn+1 −Acn−1 = Ecn,

with

E0 =
∫

vn(x)Hvn(x)dx

and

A = −
∫

vn(x)Hvn+1(x)dx =
∫

vn(x)Hvn−1(x)dx.

3.
E = E(k) = E0 − 2Acos(kl),

we can plot this relation on the first brillouin zone−π/l ≤ k < π/l. We obtain a permitted energy
band between the energyE0 − 2A andE0 + 2A. The width of the band is equal to4A depending on
the strength of the coupling termA (i.e. tunneling effect between atoms). So if the tunneling effect
increases the energy band becomes larger.

1



4.

Ψk(x) =
∞∑

n=−∞
exp(iknl)v0(x− nl)

it comes forΨ(x + l):

Ψk(x+l) =
∞∑

n=−∞
exp(iknl)v0(x−(n−1)l) = exp(ikl)

∞∑
n=−∞

exp(ik(n−1)l)v0(x−(n−1)l) = exp(ikl)Ψk(x)

5. we can easily show thatuk(x) = uk(x + l), and we get the second form of the Bloch theorem.

6. |Ψk(x + nl)|2 = |Ψk(x)|2 ∀n, so the probability to find an electron on a given atom is periodic and
it is the same on each atom site. We say that the electron is delocalized.

7. we getexp(ikl) = 1 so kn = n2π/L. The length of the Brillouin zone is equal to2π/l. So, the
number of states available is(2π/l)/(2π/L) = N − 1. One can also use the definition of the density
of state in the k-spaceg(k)dk (then integration) to show this result.
If N >> 1, thenN − 1 ' N .

8.

VG =
2Al

h̄
sin(kl)

If the energy goes toE0 + 2A, k goes to+π/l or −π/l (extremities of the first Brillouin zone -
see figure of the dispersion relation becomes zero). This means that the electron cannot move in the
crystal if its energy is too close to the maximumE0+2A. Just for information: this situation is similar
with what is happening in optic with the Bragg reflection.

3 Carrier densities

1. For 1D or 2D, we have

E =
h̄2k2

2m∗ + E1.

• For 2D, we have in k-space:

g(k)dk = 2 ∗ S

(2π)2
2πkdk

and in energy space

g(E) =
S

π
k

(
dE

dk

)−1

=
Sm∗

πh̄2

the DOS does not depend on the energyE.

• For 1D (per unit of volume), we have in k-space:

g(k)dk = 2 ∗ L

(2π)
2dk

and in energy space

g(E) =
2L

π

(
dE

dk

)−1

=
2L

πh̄

(
m

2(E − E1)

)1/2

the DOS does not depend on the energyE.
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2.
3D 2.41 ∗ 105eV −1

2D 4.5 ∗ 104

1D 6.93 ∗ 102

3. For non-degenerate semiconductors, derive analytically the expressions of the effective density of
states for a 2D and 1D system (N2D

c andN1D
c ).

N2D
c =

m∗

βπh̄2

N1D
c =

(
2m∗

βπh̄2

)1/2

4.
n = N2D

c ln (1 + exp(β(EF − E1)))
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