ECE609 Spring07

Homework 1 - Solutions
Review of Quantum Mechanics

1 The Photoelectric effect

1. The minimum photon energy, $E_{p h}$, equals the workfunction, W_{0}. This also equals:

$$
E_{p h}=q * W_{0}=1.6 * 10^{-19} * 4.3=6.89 * 10^{-19} \text { Joule }
$$

The corresponding photon frequency is:

$$
\nu=E_{p h} / h=1040 T H z
$$

The corresponding wavelength equals:

$$
\lambda=h c / E_{p h}=0.288 \mu . m
$$

The photon momentum, p , is:

$$
p=h / \lambda=2.297 * 10^{-27} \mathrm{~kg} . \mathrm{m} / \mathrm{s}
$$

2. the wavelength threshold is $\lambda_{s}=h c / W_{0}=621 \mathrm{~nm}$, so $\lambda<\lambda_{s}$

For $\lambda=546.1 \mathrm{~nm}$, we get for the Kinetic energy of the electron :

$$
K E=h c / \lambda-W_{0}=0.273 e V
$$

since $E=p^{2} /(2 m)=(1 / 2) m v^{2}$, we get for the velocity $v=3.098 * 10^{5} \mathrm{~m} . \mathrm{s}^{-1}$.
For $\lambda=645.5 \mathrm{~nm}$, it comes $v=0 \mathrm{~m} . \mathrm{s}^{-1}$ since $\lambda>\lambda_{s}$ and then $\nu<\nu_{s}$.

2 Hydrogen atom

1. Normalization condition involves $\int_{0}^{\infty}|\Psi|^{2} 4 \pi r^{2} d r=1$. It comes

$$
4 \pi C^{2} \int_{0}^{\infty} r^{2} \exp \left(-2 r / a_{0}\right) d r=1
$$

Using integrations by parts, we get

$$
\int_{0}^{\infty} r^{2} \exp \left(-2 r / a_{0}\right) d r=a_{0} \int_{0}^{\infty} r \exp \left(-2 r / a_{0}\right) d r=a_{0}^{2} / 2 \int_{0}^{\infty} \exp \left(-2 r / a_{0}\right) d r=a_{0}^{3} / 4
$$

then $C=\left(1 /\left(\pi a_{0}^{3}\right)\right)^{1 / 2}$.
2. $d P=|\Psi|^{2} 4 \pi r^{2} d r$, so $d P / d r=\left(4 / a_{0}^{3}\right) \exp \left(-2 r / a_{0}\right) r^{2}$
3. if we call $E(r)=d P / d r$, a maximum of $E(r)$ is obtained for $d E\left(r_{p}\right) / d r=0$. It comes $r_{p}=a_{0}$. The Bohr radius (classical picture) corresponds, in fact, to an orbit where the probability to find an electron is maximal (quantum picture).
4.

$$
P\left(0.9 r_{p}<r<1.1 r_{p}\right)=\left(4 / a_{0}^{3}\right) \int_{0.9 a_{0}}^{1.1 a_{0}} r^{2} \exp \left(-2 r / a_{0}\right) d r,
$$

After calculations we get $P=0.108$ (10.8%).
5.

$$
\langle r\rangle=\left(4 / a_{0}^{3}\right) \int_{0}^{\infty} r^{3} \exp \left(-2 r / a_{0}\right) d r=3 a_{0} / 2
$$

6. We note that $U(r)=-b^{2} / r$ where $b=q^{2} /\left(4 \pi \epsilon_{0}\right)$

$$
\langle U\rangle=-b^{2}\langle(1 / r)\rangle=-b^{2}\left(4 / a_{0}^{3}\right) \int_{0}^{\infty} r \exp \left(-2 r / a_{0}\right) d r=-b^{2} / a_{0}=-27.1 \mathrm{eV} .
$$

We also note that (in spherical coordinates)

$$
T=-\frac{\hbar^{2}}{2 m} \frac{\partial}{r^{2} \partial r}\left(\frac{r^{2} \partial}{\partial r}\right)
$$

we then get

$$
\langle T\rangle=\frac{\hbar^{2}}{2 m} \frac{1}{a_{0}^{2}}=13.6 \mathrm{eV}
$$

Since $E=T+V$, it comes $E=-13.6 \mathrm{eV}$. This is equivalent to the fundamental energy obtained with the Bohr model.

3 Finite potential well

1. We get:

$$
\left\{\begin{array}{l}
\Psi_{I}=\exp (i k x)+r \exp (-i k x) \\
\Psi_{I I}=E \exp (i K x)+F \exp (-i K x) \\
\Psi_{I I I}=t \exp (i k x)
\end{array}\right.
$$

2. Using the conditions of continuity:

$$
\Psi_{I}(-a / 2)=\Psi_{I I}(-a / 2) ; \quad d \Psi_{I}(-a / 2) / d x=d \Psi_{I I}(-a / 2) / d x
$$

and

$$
\Psi_{I I}(a / 2)=\Psi_{I I I}(a / 2) ; \quad d \Psi_{I I}(a / 2) / d x=d \Psi_{I I I}(a / 2) / d x
$$

we obtain 4 equations with 4 unknowns r, E, F, t. We put the system into a matrix form and solve the linear system for the unknown t. The coefficient of transmission T is given by $|t|^{2}$:

$$
T=\frac{1}{1+\left(\frac{K^{2}-k^{2}}{2 K k}\right)^{2} \sin ^{2} K a} .
$$

Since we know that $R+T=1$, it comes $R=1-T$.
3.

$$
f(E)=\frac{U_{0}^{2}}{4 E\left(E+U_{0}\right)}
$$

and

$$
g(E)=\left(2 m\left(E+U_{0}\right)\right)^{1 / 2} a / \hbar
$$

4. Numerical application.
5. $T=1$ for $g(E)=n \pi$ (n positive integer); finally we get

$$
E_{n}=n^{2} \pi^{2} \hbar^{2} /\left(2 m a^{2}\right)-U_{0},
$$

it comes $E_{1}=0.7 \mathrm{eV}, E_{2}=50.8 \mathrm{eV}, E_{3}=134.3 \mathrm{eV}$.
6. If $E \rightarrow \infty, f(E) \rightarrow 0$, so $T \rightarrow 1$. At high energy, the electron "does not feel" the effect of the potential well. Same result than that obtained using classical mechanics.

4 Finite potential wall (30pts)

1. We get:

$$
\left\{\begin{array}{l}
\Psi_{I}=\exp (i k x)+r \exp (-i k x) \\
\Psi_{I I}=C \exp (\alpha x)+D \exp (-\alpha x) \\
\Psi_{I I I}=t \exp (i k x)
\end{array}\right.
$$

with $k=(2 m E)^{1 / 2} / \hbar$ and $\alpha=\left(2 m\left(U_{0}-E\right)\right)^{1 / 2} / \hbar$.
Using the conditions of continuity:

$$
\Psi_{I}(0)=\Psi_{I I}(0) ; \quad d \Psi_{I}(0) / d x=d \Psi_{I I}(0) / d x
$$

and

$$
\Psi_{I I}(a)=\Psi_{I I I}(a) ; \quad d \Psi_{I I}(a) / d x=d \Psi_{I I I}(a) / d x
$$

we obtain 4 equations with 4 unknowns r, C, D, t. We put the system into a matrix form and solve the linear system for the unknown t. The coefficient of transmission T is given by $|t|^{2}$:

$$
T=\frac{16}{\left|\left(1+\frac{\alpha}{i k}\right)\left(1+\frac{i k}{\alpha}\right) \exp (-\alpha a)+\left(1-\frac{\alpha}{i k}\right)\left(1-\frac{i k}{\alpha}\right) \exp (\alpha a)\right|^{2}} .
$$

2. $a \gg 1 / \alpha$ leads to $\exp (-\alpha a) \ll \exp (\alpha a)$, so

$$
T \simeq \frac{16 \exp (-2 \alpha a)}{\left(4+\left(\frac{\alpha}{k}-\frac{k}{\alpha}\right)^{2}\right)}
$$

or

$$
T \simeq 16 \frac{E}{U_{0}}\left(1-\frac{E}{U_{0}}\right) \exp (-2 \alpha a) .
$$

3. From the previous result:

$$
\log (T)=\log \left(16 \frac{E}{U_{0}}\left(1-\frac{E}{U_{0}}\right)\right)-2 \alpha a .
$$

We set the error ϵ :

$$
\epsilon=\log \left(16 \frac{E}{U_{0}}\left(1-\frac{E}{U_{0}}\right)\right)
$$

such as

$$
\log (T)=-2 \alpha a+\epsilon
$$

$\epsilon(x)>0$ is a necessary condition to obtain the maximum error; indeed $T<\exp (-2 \alpha a+\epsilon)$ only if $\exp (\epsilon)>1$, then $\epsilon>0$.

We set $x=E / U_{0}$; Within the positive region, $\epsilon(x)$ is maximal if $d \epsilon(x) / d x=0$; we get $x=1 / 2$. So $\epsilon(1 / 2)=\log (4) \simeq 1.4$. When $\alpha a=50$, we get

$$
\log (T)=-100+1.4,
$$

the formula is then exact at 1.4%.
At the classical limit $\log (T) \rightarrow-\infty$ then $T \rightarrow 0$.

