ECE609 Spring06 HOMEWORK 6 - PRACTICE FINAL EXAM MOS capacitors and MOSFET

1 MOS capacitors

- 1. Calculate the flatband voltage of a silicon nMOS capacitor with a substrate doping $Na = 10^{17} cm^{-3}$ and an aluminum gate (with a "work function" $V_M = 4.1V$). Assume (i) there is no fixed charge in the oxide or at the oxide-silicon interface, (ii) we are at room temperature, (iii) $n_i = 10^{10} cm^{-3}$ $V_{FB} = -0.93V$
- 2. Using the result previously obtained, calculate the threshold voltage of a silicon nMOS capacitor with a substrate doping $Na = 10^{17} cm^{-3}$, a 20nm thick oxide ($\epsilon_{ox} = 3.9\epsilon_0$) and an aluminum gate ($V_M = 4.1V$). Assume there is no fixed charge in the oxide or at the oxide-silicon interface. since $V_F = 0.42V$, $V_T = -0.09V$

2 MOSFET

- 1. Calculate the drain current of a silicon nMOSFET with $V_T = 1V$, $W = 10\mu m$, $L = 1\mu m$ and tox = 20nm. The device is biased with $V_{GS} = 3V$ and $V_{DS} = 5V$. Use the quadratic model, a surface mobility of $300cm^2/Vs$ and set $\epsilon_{Si} = 3.9$. Also calculate the transconductance at $V_{GS} = 3V$ and VDS = 5 V and the output conductance at $V_{GS} = 3V$ and $V_{DS} = 0V$. The MOSFET is biased in saturation since $V_{DS} > V_{GS} - V_T$ so $I_D = 1.04mA$ and gm = 1.04mS, gd = 1.04mS, S for Siemens
- 2. Repeat the question above using the variable depletion layer model. Use $V_{FB} = -0.807V$ and $Na = 10^{17} cm^{-3}$. For the transconductance, you will derive the value of the modified mobility μ_n^* and you will comment on the result of the conductance.

To find out whether the MOSFET is biased in saturation, we need first to calculate $V_{Dsat} = 1.39V$ We the get $I_D = 0.7mA$

 $g_m = 0.52mS$ with $\mu_n^* = 149cm^2/V - s$ $g_d = 1.04mS$, which is the same as that of example above since the depletion layer width is constant

 $g_d = 1.04mS$. which is the same as that of example above since the depletion layer width is constar for $V_{DS} = 0$.