Eigenvalue Problems

Introduction (Matrices from now on)

Occur in many areas of Science and Engineering

Standard Form: Find nonzero vector x and scalar λ

such that

$$Ax = \lambda x$$

Ax parallel to x

If A is real symmetric or complex Hermitian

If A is real non-symmetric or complex non-Hermitian

Definition

Spectrum $\sigma(A) = \{\lambda \in \mathbb{C} | \exists x \neq 0 : Ax = \lambda x\}$

Spectral radius $r(A) = \max \{ |\lambda| : \lambda \in \sigma(A) \}$

Remark

x is a right eigenvector

$y^*A = y^*y$

y is a left eigenvector.

$$y^*y = \lambda y$$

We note that $x = y$ and $A = A^*$

$\lambda = \bar{\lambda}$ (real)

$\lambda = \sigma(A)$
equation \(Ax = \lambda x \) is equivalent to
\[
(A - \lambda I)x = 0
\]
which has non-trivial solution (\(x \neq 0 \)) if and only if \((A - \lambda I) \) is singular
\[
\Rightarrow \quad \det [A - \lambda I] = 0
\]
Characteristic polynomial of degree \(N \) (\(A \) of size \(N \))

Example \(A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \)

\[
\det [A - \lambda I] = \det \begin{bmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{bmatrix} = \lambda^2 - 6\lambda + 8 = 0
\]
\[
(3 - \lambda)^2 - (-1)(4) = \lambda^2 - 6\lambda + 8 = 0
\]
\[
\Rightarrow \lambda_1, \lambda_2 = \frac{6 \pm \sqrt{36 - 32}}{2} = 3 \pm 1
\]
\[
\Rightarrow \lambda_1 = 4, \quad \lambda_2 = 2
\]
\[
\text{eigenvalues} = \begin{bmatrix} 4, 2 \end{bmatrix}
\]

Remark: Roots of polynomial of degree \(\geq 4 \) cannot always be computed as a flash number of steps.

Computations of
- Eigenvalue problem is checkable in exacts (by nature)
- "Algebraic multiplicity of a root \(x \) is the number of times \(x \) is a root"
Characteristic polynomial is powerful theoretical tool but useless computationally (too demanding, too sensitive).

Shortcoming problem

\[A = \begin{bmatrix} 1 & \varepsilon \\ \varepsilon & 1 \end{bmatrix} \quad \varepsilon \ll 1 \text{ Fermi} \]

eigenvalue (exact) \(1 + \varepsilon, 1 - \varepsilon \).

polynomial \(\det (A - I) = \lambda^2 - 2\lambda + (1 - \varepsilon^2) = \lambda^2 - 2 > + 1 \)

\(\Rightarrow 1 \) (double root), although they are distinct in working precision.

Definition

Two matrices \(A \) and \(B \) are similar if there exists a non-singular matrix \(X \) such that

\[A = XBX^{-1} \]

(\(\Rightarrow \) same eigenvalue).

If \(B \) is similar to \(A \) and \(C \) to \(B \), then \(C \) is similar to \(A \) \(\Rightarrow \) similarity transform can take several steps.
A is diagonalizable if it is similar to a diagonal matrix

\[A = XDX^{-1} \Rightarrow D = X^*AX \]

\(D = \text{Diagonal matrix} \)

Theorem of AE: The following are equivalent:

1. \(A \) is nondefective
2. \(A \) is diagonalizable
3. \(A \) has \(n \) linearly independent eigenvectors (not unique)
4. There exists a non-singular matrix \(X \in \mathbb{C}^{n \times n} \) and \(D = \text{diag}(\lambda_1, \ldots, \lambda_n) \) such that \(D = X^{-1}AX \)

\[\Rightarrow \text{Any matrix is unitarily similar to a triangular matrix} \]

\[A = QRQ^* \quad \text{and} \quad R \text{ such that} \]

\[Q^*AQ = R \]

By 1, \(A \) is real if \(Q^*AQ = R \) is:

\[R_{ii} = \Re \lambda_i \quad \text{or} \quad 2 \times 2 \text{ matrix with complex conjugate eigenvalues} \]

\(\Re \lambda_i \) and \(\Im \lambda_i \)
Any Hermitian matrix is unitarily similar to a real diagonal matrix. (Schafer form is real diagonal)

Jordan form

- Not all matrices are diagonalizable, they are limited to similarity transform.
- A defective matrix is a matrix that does not have a full set of N linearly independent eigenvectors.
- Defective matrix has an eigenvalue of multiplicity R > 1 with fewer than R linearly independent corresponding eigenvectors.

Example:

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \Rightarrow \text{eigenvalue } 0, \text{ geometric multiplicity } 1
\]

\[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix} \Rightarrow \text{eigenvalue } 1, \text{ algebraic multiplicity } 2 \Rightarrow \text{ geometric multiplicity } 1
\]

Defective matrix
The Jordan Canonical Form of matrix A is an upper bidiagonal matrix whose main diagonal contains the eigenvalues of A and superdiagonal contains 0 or 1.

\[A = X J X^{-1} \]

Example

\[J = \begin{bmatrix}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{bmatrix} \]

- 4 is a single eigenvalue with algebraic multiplicity 1.
- 3 has algebraic multiplicity 2.
- 2 has algebraic multiplicity 2, but geometric multiplicity 1 (i.e., 1 eigenvector).

General Theorem

If A is a non-singular X such that

\[A = X J X^{-1} = X \begin{bmatrix} J_1 & & \\ & \ddots & \& \\ & & J_k \end{bmatrix} X^{-1} \]

Then J_i is called a Jordan block.

A has only one eigenvector for each J_i.

J_i could be equal to J_j.

The size of J_i is the algebraic multiplicity of λ_i.

\[J_i = \begin{bmatrix}
\lambda_i & 1 \\
0 & \ddots
\end{bmatrix} \]
Some more definitions

\[d(\lambda) \# \text{of alg. mult.} \]
\[r(\lambda) \# \text{of linearly ind. eigenvectors [geo. mult.]} \]

\[\Rightarrow d(\lambda) \geq r(\lambda) \]

- if \(d(\lambda) = r(\lambda) = 1 \) \Rightarrow \lambda \text{ is simple eigenvalue}
- if \(d(\lambda) > r(\lambda) \) \Rightarrow \lambda \text{ is a defective eigenvalue}
- if \(d(\lambda) = 0 \) \Rightarrow \lambda \text{ is a non-defective } \square

A is non-defective if all its eigenvalues are distinct.

Eigendecomposition

If \(A \) is non-defective, \(Ax = \lambda x \Rightarrow A = XDX^{-1} \)

\[D = XAX \]

Problem transformations

\[\Rightarrow \text{shift} \quad (A - \sigma I)x = (\lambda - \sigma) x. \]

\[(A - \sigma I) = X (D - \sigma I) X \]

Eigenvalues are shifted \[D - \sigma I = \begin{bmatrix} 3 - \sigma & 0 \\ 0 & 2 - \sigma \end{bmatrix} \]
Inversion

\[A^{-1} = \frac{1}{\lambda} x \]
\[A^{-1} = \lambda \ D^{-1} \ x \]
\[A^k = X \ D^k \ X^{-1} \]
\[D^k = \int_{\lambda}^{\infty} \ d\lambda \]

Powers

\[A^k x = \lambda^k x \]
\[A^k = X \ D^k \ X^{-1} \]

Polynomials

if \(p(t) \) is polynomial

\[p(A) x = p(\lambda) x \]
\[p(A) = X \ p(D) \ X^{-1} \]

\(\square \) Computing the eigenvalue problem

Different questions:

- Are all eigenvalues/eigenvectors needed at any a few?
- How accurate the solution should be?
- Is matrix relatively small and dense, or large and sparse?
- Does matrix have any special properties?

Different Algorithms possible

Basic:
- Power iteration
- Inverse iteration
- Rayleigh quotient
- QR algorithm
- Jacobi iteration

Advanced:
- Krylov subspace: Arnoldi, Lanczos,
- Jacobi Davidson, Trace-min, FEAST

Power Method

- Repeatedly multiplies matrix times a vector
- Initial vector ≠ 0
- Assuming that \(A \) has unique eigenvalue of
 largest modulus, say \(\lambda \) with eigenvector \(\mathbf{v} \)

then \(x_k = A x_{k-1} \) converges to multiple of \(\mathbf{v} \)
 corresponding to dominant eigenvalue.
Why? We can express the initial vector

\[x_0 = \sum_{i=1}^{N} a_i v_i \]

where \(v_i \) are eigenvectors of \(A \)

And \(Av_i = \lambda_i v_i \)

Then

\[x_k = A^k x_0 = \sum_{i=1}^{N} \lambda_i^k a_i v_i = x_k \left[\lambda_1 + \sum_{i=2}^{N} \left(\frac{\lambda_i}{\lambda_1} \right)^k \right] \]

Since \(\left| \frac{\lambda_i}{\lambda_1} \right| < 1 \) for \(i > 1 \)

\[\Rightarrow \quad x_k \rightarrow 0 \]

\[\Rightarrow \quad \text{we get only the component corresponding to } v_1 \text{ at convergence.} \]

In practice, we should normalize along the iteration to avoid overflow/underflow if \(\lambda_1 < 1 \)

\[\Rightarrow \quad \begin{bmatrix} y_k \\ x_k \end{bmatrix} = \begin{bmatrix} A & I \\ \frac{1}{\|y_k\|} & 0 \end{bmatrix} \begin{bmatrix} y_k \\ x_k \end{bmatrix} \Rightarrow \quad \|y_k\| \rightarrow 1 \quad \|x_k\| \rightarrow \frac{1}{\|y_k\|} \]

Example

\[A = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix} \]

\[x_0 = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} \]

\[\text{Result} \]

\[\lambda_1 = 2 \]

\[v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]
* geometric interpretation

Successive

Initial vector x_0 + x_1 by multiplication components of v_1 will start to dominate dominant eigenvector (largest eigenvalue).

Remark

- There may be more than one eigenvector having maximum modulus \Rightarrowortonormal may converge to linear combination of corresponding eigenvectors.

- Convergence rate of power iteration depends on ratio

$$\frac{x_2}{x_1}$$

Where x_2 is eigenvector having second largest modulus.
Invert creation

The eigenvalues of A and A^{-1} are identical.

But largest eigenvalues of A^{-1} are reciprocal of smallest eigenvalues of A (in magnitude)

Idea: Use the power method on A^{-1} to compute the smallest eigenvalue of A.

$$y_k = A^{-1} x_{k-1} \quad \Rightarrow \quad A y_k = x_{k-1} \quad \text{[linear system]}$$

$$x_k = \frac{y_k}{\|y_k\|_\infty}$$

The factorization of A need to be performed only once, only solve stage needed along the iteration.

Shift and invah

Use power method on $(A - \sigma I)^{-1} \Rightarrow$ compute eigenpairs closest to σ.
Rayleigh (Ritz) quotient

\[\lambda = \frac{x^T A x}{x^T x} \]

It can accelerate convergence of iterative methods → gives better approx to eigenvalue at iteration b

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1.5 & 1.67 & 1.80 & 1.91 & 1.570 \\
x^T A x & 1.5 & 1.8 & 1.941 & 1.951 & 1.599 \\
\end{array}
\]

Remark: given an approximate eigenvector \(x \) for real matrix \(A \), determine the best approximate for \(\lambda \) → similar to a least-squares problem \(n \times 1 \) size

\[x^T A x \]

Normal equation

\[(x^T x) \lambda = x^T A x \implies \lambda = \frac{x^T A x}{x^T x} \]

Rayleigh quotient has many useful properties

\[\lambda_1 = \max_{x \neq 0} \frac{x^T A x}{x^T x} \quad \lambda_n = \min_{x \neq 0} \frac{x^T A x}{x^T x} \]
Rayleigh quotient iteration

\(\text{cond}\text{. inverse iteration} + \text{Rayleigh quotient} \)

\(\lambda \text{ rapidly to} \)

eigenvalue \(\approx \) approx.

eigenvalue used as shift

\(\beta_k = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}_k}{\mathbf{x}_k^T \mathbf{x}_k} \)

\((\mathbf{A} - \sigma \mathbf{I}) \mathbf{y}_{k+1} = \mathbf{x}_k \quad \Rightarrow \quad \mathbf{x}_{k+1} = \frac{\mathbf{y}_{k+1}}{\|\mathbf{y}_{k+1}\|} \)

\(\tau \text{ needs to reorthogonalize at each iteration} \)

\(\Rightarrow \text{works for}\ \text{Hermitian matrix as well} \)

Example

\[
\begin{array}{ccc}
\mathbf{x}_0 & \mathbf{x}_1 & \mathbf{x}_2 \\
0.867 & 0.323 & 1 \\
0.323 & 1 & 1 \\
\Delta_k & 1.876 & 1.998 & 2
\end{array}
\]
Deflation

After \(x_1 \) have been computed, additional eigenvectors can be computed by deflation that remove known eigenvalues.

Subspace Iteration

- simplest method for computing many eigenvectors
- generalization to eigensubspace \(X_{n \times p} \)

\[
X_{k+1} = AX_k \quad \text{starting with } X_0
\]

\(\Rightarrow \) span \([X_k] \) converges to invariant subspace determined by \(p \) largest eigenvalue of \(A \).

\(\Rightarrow \) one can generalize subspace iteration way shift-rotate as well.

Remark: * normalization is needed
* each column of \(X_k \) converge to column vec tor
\(\Rightarrow X_k \) become increasingly ill-conditioned.
Both issues can be addressed using QR factorization at each iteration (i.e. orthogonal subspace iteration).

\[
\begin{align*}
Q_k R_k &= X_{k-1} \\
X_k &= A Q_k \\
R_k &= \text{reduced QR factorization of } X_{k-1} \\
\text{orthonormalization}
\end{align*}
\]

\[
R_k = \text{span } \{Q_k\} = \text{span } \{X_{k-1}\}
\]

Fast common method \(\Rightarrow\) QR algorithm \([QR \text{ iterations}]

For \(p = AV, X_0 = I\)

we note that \(A_k = Q_k^H A Q_k\)

generated by orthogonal iterations converge to triangular or block triangular form \(\Rightarrow\) yielding all eigenvalues of \(A\).

QR iteration = compute successive matrices \(A_k\).
idea: start with \(A_0 = A \)

\[
\Rightarrow \text{at iteration } k \text{ compute } Q_k R_k = A_{k-1}
\]

and form reverse product \(A_k = R_k Q_k \)

By successive matrix, \(A_k \) are unitarily similar to each other:

\[
A_k = R_k Q_k = Q_k^H A_{k-1} Q_k
\]

Diagonal entries of \(A_k \) converge to eigenvalue of \(A \).

Product of orthogonal matrix \(Q_k \) converge to eigenvector space.

If \(A \) is symmetric, symmetry is preserved by QR iteration, \(A_k \) both triangular and symmetric.

\[
\text{Example: } A_0 = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}, \quad A_0 = Q_1 R_1 = \begin{bmatrix} 0.562 & -0.745 \\ 0.745 & 0.562 \end{bmatrix} \begin{bmatrix} 7.28 & 3.02 \\ 3.02 & 3.32 \end{bmatrix}
\]

\[
A_1 = R_1 Q_1 = \begin{bmatrix} 7.83 & 0.96 \\ 0.96 & 3.17 \end{bmatrix}
\]
off diagonal entries become smaller and diagonal entries closer to eigenvalues 2 and 3.

- Process continues until convergence.

The basic QR algo is not used in practice (too slow), and it is usually accelerated by:

1. Use of shift
2. Transforming \(A \) first to Hessenberg form

Shift

Remark \(A \) (i) converge to real eigenvalue.

Real

Symmetric Cap

Until row 'ain 1 \(i \leq N \) converge to zero

Obtain next shift \(\mu = \text{any} \).

\[
A - \mu I = QR
\]

Set \(A = RQ + \mu I \)

Next step = deflation, apply algo to \((n-1) \times (n-1)\) upper triangular matrix.
Preliminary reduction

- Efficiency of QR algo can be enhanced by first transforming the matrix as close as possible to triangular form.
- Hessenberg matrix is triangular except for one additional nonzero subdiagonal.
- Any matrix can be reduced to Hessenberg form in finite number of steps by orthogonal similarity transform or Householder transformation.
- Symmetric Hessenberg matrix is Tridiagonal.

So, QR algo is usually implemented in 2 stages:

\[A \leadsto \text{Symmetric} \leadsto \text{Tridiagonal} \leadsto \text{Diagonal} \]

or

\[A \leadsto \text{non-Symmetric} \leadsto \text{Hessenberg} \leadsto \text{Triangular} \]

Reduction obtained in definite Kronecker stage. Continue until convergence in practice only a small number of iterations needed.

Do much of the work in preliminary reduction.

\[Q \text{ or } R \]
Complements

Generalized eigenvalue problem \(Ax = \lambda B x \)

\(A, B \) \(N \times N \) matrices.

- Generalized problem can be converted to standard one.

\[
(B^{-1}A)x = \lambda x \quad (A^{-1}B)y = \frac{1}{\lambda} y
\]

- If \(B \) is not spec\(\lambda \), \(B = LL^T \)

\[
A = L^T^{-1} A (L^T)^{-1} \quad LL^T x = \lambda L^T x
\]

- Other alternative QZ algorithm

Reduce \(A \) and \(B \) simultaneously to upper triangular form.

Eigenvalues given by \(\lambda_i = \frac{a_{ii}}{b_{ii}} \) for \(b_{ii} \neq 0 \).
Generalized problems would add difficulty for more advanced alg like FEAST.

Solving \(Ax \rightarrow Bx \)

* If \(A, B \) symmetric, \(B = B^T \)

\[x^T B x = I \]

\[x = \{ x_1, \ldots, x_M \} \]

* If \(A, B \) are symmetric

\[A x = x B x \]
\[A^T y = B^n y \]

\(B \) - biorthogonal basis

other forms of eigenvalue problems

\(A [x] x \rightarrow B x \Rightarrow \) non-linear eigenvalue

\(e.g. \) polynomial eigenvalue problem

\[\begin{bmatrix} A_2 + \lambda A_1 + A_0 \end{bmatrix} x = 0 \]

\((\text{quadratic}) \)

\(A [\{x\}] x \rightarrow B x \Rightarrow \) non-linear

eigenvector problem

\(e.g. \) electronic structure calculation