ECE609 Spring09 HOMEWORK 3 Carrier Densities

1 Carrier Densities

- 1. For a 3D semiconductor, develop an expression for the total number of available states/ cm^3 in the conduction band between energies E_c and $E_c + \gamma k_B T$, where γ is an arbitrary constant. Do the same for the valence band between energies $E_v \gamma k_B T$ and E_v .
- 2. Evaluate the approximation errors if one uses the Maxwell-Boltzmann statistics instead of the Fermi-Dirac statistics, for the following energies: $E - E_F = 2.2k_BT$, $E - E_F = 2.9k_BT$, $E - E_F = 4.6k_BT$. Comment.
- 3. Determine the temperature at which the intrinsic carrier density in (i) Silicon and (ii) GaAs are equal to the room temperature (300K) intrinsic carrier density of Germanium (Ge) $n_i = 2 \times 10^{13}/cm^3$ (here N_c , N_v , E_G and m^* are independent of the temperature).
- 4. Semiconductor A has a bang gap of 1eV and semiconductor B has a band gap of 2eV. What is the ratio of the intrinsic carrier density in the two materials (n_i^A/n_i^B) at 300K. We assume that all effective masses are equal (electrons and holes for both A and B). You will comment the result.
- 5. Determine the equilibrium electron and hole concentrations inside a uniformly doped sample of Silicon under the following conditions:
 - a- T=300K, N-type Semiconductor, $N_D = 10^{15}/cm^3$
 - b- T=300K, P-type Semiconductor, $N_A = 10^{16}/cm^3$
 - **c-** T=300K, $N_A = 9 * 10^{15} / cm^3$, $N_D = 10^{16} / cm^3$
 - **d-** T=450K, $N_A = 0$, $N_D = 10^{14}/cm^3$
 - e- T=650K, $N_A = 0$, $N_D = 10^{14}/cm^3$

Attention: You will consider that $n_i = 10^{10}/cm^3$ at T = 300K, $m_n^* = 1.18m_0$, $m_p^* = 0.81m_0$, and $E_g = 1.42eV$ at T = 300K, $E_g = 1.08eV$ at T = 450K and $E_g = 1.015eV$ at T = 650K, every other material dependent quantities should be calculated.

- 6. For each of the conditions specified in the above question, determine the position of E_i , compute $E_F E_i$, and draw a dimensioned energy band diagram for the Silicon sample.
- 7. Determine the concentration of donor atoms that must be added so that the Silicon is N-type and the Fermi energy is 0.2eV below the conduction band edge. Assume complete ionization, temperature T = 300K, $2.8 * 10^{19}/cm^3$ for the effective DOS for the electrons, and $n_i = 10^{10}/cm^3$.
- 8. A GaAs semiconductor is doped with $2.3 * 10^{17}$ donors per cm^3 , assuming that this semiconductor is non-degenerate, calculate the electron and hole concentration at equilibrium. Calculate (Ec EF). Comments about the obtained results and the assumption made to calculate these results.
- 9. In a nondegenerate Germanium at room temperature, we give $n_i = 10^{13}/cm^3$, n = 2p and $N_a = 0$. Determine n, p, N_d and where is the Fermi level located from E_i ?