ECE609 Spring09
 Homework 1
 Review of Quantum Mechanics

1 The Photoelectric effect

(be careful with the units)

1. A metal has a workfunction of 4.3 eV . What is the minimum photon energy in Joule to extract an electron with 1 eV kinetic energy from this metal through the photo-electric effect? What are the photon frequency in Terahertz and the photon wavelength in micrometer (we note that $\lambda=c / \nu$ where c is the velocity of the light $\simeq 3 * 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-} 1$)? What is the corresponding photon momentum ?
2. A photocathode in Potassium has a workfunction of 2 eV . For an incoming radiation of $\lambda=610 \mathrm{~nm}$, what is the maximum velocity of an extracted electron? For an incoming radiation of $\lambda=630 \mathrm{~nm}$, what is the maximum velocity of an extracted electron?

2 Hydrogen atom (30pts)

The fundamental level (1s state) of the hydrogen atom can be described by the wave function (spherical coordinates $r \geq 0$):

$$
\Psi(r)=C \exp \left(-r / a_{0}\right),
$$

where C is a constant (complex) and a_{0} is defined as the Bohr radius.
(Hint: for all the integrations, we will consider a volume $4 \pi r^{2} d r$ - elementary volume between two spheres with radius r and $r+d r$ (shell))

1. Find the value of C (Normalize $\Psi)$,
2. What is the density of probability to find an electron in a volume $4 \pi r^{2} d r$ (shell). Plot the density of probability $d P / d r$ in function of r.
3. We call $r=r_{p}$ the value for which this probability exhibits a maximum. What is r_{p} in function of a_{0} ? Comment
4. What is the probability to find an electron at the distance between $0.9 r_{p}$ and $1.1 r_{p}$?
5. Give the average value (expectation value) of the distance that separate the proton from the electron $\langle r\rangle$. We note $\langle r\rangle=\langle\Psi| r|\Psi\rangle=\int_{0}^{\infty} \Psi^{*}(x) r \Psi(x) 4 \pi r^{2} d r$.
6. Give the expectation values (in eV) of the potential energy $\langle U\rangle$ and the kinetic energy $\langle T\rangle$. What is the value of the total energy? Comment.

3 Finite potential well (25pts)

We consider a 1D finite potential well, where the variations of $U(x)$ are defined by:

$$
U(x)=\left\{\begin{array}{l}
0 \text { if } x<-a / 2 \text { (region I), or } x>a / 2 \text { (region III) } \\
-U_{0} \text { if }-a / 2<x<a / 2 \text { (region II) }
\end{array}\right.
$$

where a and U_{0} are positive constants. We consider an incoming electron wave from the left of the system with energy $E>0$ and amplitude equal to one.

1. Give the expressions of the wave function $\Psi(x)$ in the three regions. We will set:

$$
k=(2 m E)^{1 / 2} / \hbar \text { and } K=\left(2 m\left(E+U_{0}\right)\right)^{1 / 2} / \hbar .
$$

2. The Transmission coefficient T can take the following form:

$$
T=\frac{1}{1+f(E) \sin ^{2} g(E)}
$$

where

$$
f(E)=\frac{U_{0}^{2}}{4 E\left(E+U_{0}\right)}
$$

and

$$
g(E)=\left(2 m\left(E+U_{0}\right)\right)^{1 / 2} a / \hbar
$$

What is the reflection coefficient R (no calculation is necessary here)?
3. Numerical application, $a=1.5 \mathrm{~A}, U_{0}=16 \mathrm{eV}$. Plot $T(E)$ for $E<150 \mathrm{eV}$
4. Calculate (analytically) the energy values for which T is equal to 1 (total transmission). What are the numerical expressions of these energy values (we consider only the values smaller than 150 eV)?
5. What is happening if $E \rightarrow \infty$. Comment.

4 Finite potential wall (15pts)

We consider a 1D finite potential wall, where the variations of $U(x)$ are defined by:

$$
U(x)=\left\{\begin{array}{l}
0 \text { if } x \leq 0 \text { (region I), or } x \geq a \text { (region III) } \\
U_{0} \text { if } 0<x<a \text { (region II) }
\end{array}\right.
$$

where a and U_{0} are positive.
We consider an incoming electron wave from the left of the system with energy $0<E<U_{0}$ and amplitude equal to one.

1. After calculations, one can find that the transmission coefficient T, is given by:

$$
T=\frac{16}{\left|\left(1+\frac{\alpha}{i k}\right)\left(1+\frac{i k}{\alpha}\right) \exp (-\alpha a)+\left(1-\frac{\alpha}{i k}\right)\left(1-\frac{i k}{\alpha}\right) \exp (\alpha a)\right|^{2}},
$$

where $k=(2 m E)^{1 / 2} / \hbar$ and $\alpha=\left(2 m\left(U_{0}-E\right)\right)^{1 / 2} / \hbar$. If we consider a very large barrier where $a \gg 1 / \alpha$, toward this limit, give the expression of T in function of E / U_{0} and αa.
2. We consider the approximate formula:

$$
\log (T)=-2 \alpha a
$$

What is the accuracy of this expression as compared to the result obtained above. If $\alpha a=50$, show that the error is $\simeq 1.4 \%$. What is happening at the classical limit (Hint: The Planck constant goes to zero)?

