ECE344 Fall08 EXERCISES MOSFET

MOSFET

- 1. Calculate the drain current of a silicon nMOSFET with $V_T = 1V$, $W = 10\mu m$, $L = 1\mu m$ and tox = 20nm. The device is biased with $V_{GS} = 3V$ and $V_{DS} = 5V$. Use the quadratic model, a surface mobility of $300cm^2/Vs$ and set $\epsilon_{Si} = 3.9$. Also calculate the transconductance at $V_{GS} = 3V$ and VDS = 5 V and the output conductance at $V_{GS} = 3V$ and $V_{DS} = 0V$.
- 2. Repeat the question above using the variable depletion layer model. Use $V_{FB} = -0.807V$ and $Na = 10^{17} cm^{-3}$. For the transconductance, you will derive the value of the modified mobility μ_n^* and you will comment on the result of the conductance.

Solution

- 1. The MOSFET is biased in saturation since $V_{DS} > V_{GS} V_T$ so $I_D = 1.04mA$ and gm = 1.04mS, gd = 1.04mS, S for Siemens
- To find out whether the MOSFET is biased in saturation, we need first to calculate V_{Dsat} = 1.39V We then get I_D = 0.7mA g_m = 0.52mS with µ_n^{*} = 149cm²/V - s g_d = 1.04mS. which is the same as that of example above since the depletion layer width is constant for V_{DS} = 0.