1 Problem 1

An abrupt Si P-N junction has $N_{a}=10^{18} \mathrm{~cm}^{-3}$ on one side and $N_{d}=5 * 10^{15} \mathrm{~cm}^{-3}$ on the other.

1. Calculate the Fermi-level positions at 300 K in the P and N regions (relative to E_{i} levels).
2. Sketch to scale an equilibrium band diagram for the junction and determine the built-in potential $q V_{o}$ from the diagram (in eV).
3. Compare the previous result with the one obtained by equation (5.10) in class (or textbook).
4. Using the full depletion approximation, calculate x_{n}, x_{p}, the electric field ε and Q the total charge density in the P or N side. We will suppose that the $\mathrm{P}-\mathrm{N}$ junction has a circular cross section with a diameter of $10 \mu \mathrm{~m}$. You will also sketch $\varepsilon(\mathrm{x})$ and the charge density $\rho(x)$ to scale.

2 Problem 2

An abrupt P-N junction (with cross section $A=10^{-4} \mathrm{~cm}^{2}$) has the following properties at 300 K .

P-side	N-side
$N_{a}=10^{17} \mathrm{~cm}^{-3}$	$N_{d}=10^{15} \mathrm{~cm}^{-3}$
$\tau_{n}=0.1 \mu s$	$\tau_{p}=10 \mu s$
$\mu_{p}=200 \mathrm{~cm}^{2} / V . s$	$\mu_{n}=1300 \mathrm{~cm}^{2} /$ V.s
$\mu_{n}=700 \mathrm{~cm}^{2} / V . \mathrm{s}$	$\mu_{p}=450 \mathrm{~cm}^{2} /$ V.s

The junction is forward biased by 0.5 V . Using the "ideal diode" assumption, what is the forward current? what is the current at a reverse bias of -0.5 V ? You will report in a TABLE of the numerical values of all the physical quantities that are necessary to compute the current I (you will use $n_{i}=1.5 * 10^{10} \mathrm{~cm}^{-3}$).

3 Problem 3

1. Consider a GaAs P-N junction (ideal diode) with a reverse saturation current $\mathrm{I}_{\mathrm{o}}=10^{-18} \mathrm{~A}$, calculate the applied bias potential required to obtain a current of 10 mA .
2. An abrupt silicon $\left(n_{i}=10^{10} \mathrm{~cm}^{-3}\right) \mathrm{p}$-n junction consists of a p-type region containing $10^{16} \mathrm{~cm}^{-3}$ acceptors and a n-type region containing $5 * 10^{16} \mathrm{~cm}^{-3}$ donors. Calculate the built-in potential of this p-n junction. For an applied voltage equals $0,0.5$ and -2.5 V , calculate the total width of the depletion region (in $\mu \mathrm{m}$), calculate maximum electric field in the depletion region (in $\mathrm{kV} / \mathrm{cm}$), calculate the potential across the depletion region in the n-type semiconductor (in V olt). You will put these nine results into a summary table.

	$V_{a}=0 V$	$V_{a}=0.5 V$	$V_{a}=-2.5 \mathrm{~V}$
$W \mu m$			
$E(k V / \mathrm{cm})$			
$V_{n}(V)$			

