Lectures 18-19-20-21- Trees

- BST runs in $O(\log N)$ for search/insertion/deletion, and $O(N)$ for traversal

Binary Search Tree (BST)

```
class Node {
  public int key; // key-id value
  public Node left; // left child
  public Node right; // right child

  // constructor
  public Node(int key) {
    this.key = key;
    left = null;
    right = null;
  }
}
```

```
class Tree {
  private Node root; // Ref. root

  public Tree() { // constructor
    root = null;
  }
  // methods...Here
}
```

```java
public Node find(int i) {
  Node current = root; // start at root
  while (current!=null && current.key!=i) {
    if (i<current.key) { // go left
      current = current.left;
    } else { // go right
      current = current.right;
    }
  }
  return current; // return Node or null
}
```
Lectures 18-19-20-21- Trees

- Transform a list into a binary search tree:

 10, 4, 7, 15, 3, 18, 16

(1)

(2)

(3)

(4)

(5)

(6)

(7)
Lectures 18-19-20-21- Trees

- Main methods (recursive or iterative): find, insert, delete, maximum/minimum, traversal (in-order, post-order, pre-order)

```java
public Node recfind(Node current, int i) {
    if (current == null) return null;
    elseif (i < current.key) // search left
        recfind(current.left, i);
    elseif (i > current.key) // search right
        recfind(current.right, i);
    else                      // find the target
        return current;
}

public void recinsert(Node current, int i) {
    if (i < current.key) {
        // search left
        if (current.left == null) // insert node?
            current.left = new Node(i);
        else
            recinsert(current.left, i); // keep searching
    }
    else if (i >= current.key) {
        // search right
        if (current.right == null) // insert node?
            current.right = new Node(i);
        else
            recinsert(current.right, i); // keep searching
    }
}

public Node minimum() {
    Node current, last;
    current = root;
    while (current != null) {
        last = current;              // remember node
        current = current.left;
    }
    return last;
}
```

Lecture 20: Deleting a node
in-order
1- Visit the left subtree
2- Visit the node (ex: display it)
3- Visit the right subtree

pre-order
1- Visit the node (ex: display it)
3- Visit the left subtree
3- Visit the right subtree

post-order
1- Visit the left subtree
2- Visit the right subtree
3- Visit the node (ex: display it)

public void inOrder(Node current) {
 if (current!=null){
 inOrder(current.left); //1
 System.out.print(current.key+" "); //2
 inOrder(current.right); //3
 }
}

Result is (In-Order) : 1 5 7 10 14 16
Result is (Pre-Order) : 10 5 1 7 14 16
Result is (Post-Order): 1 7 5 16 14 10
Lectures 18-19-20-21- Trees

- Red-Black Tree rules (to ensure that the tree is balanced)
 1- Every nodes is either red or black
 2- The root is always black
 3- If a node is red, its children must be black
 4- Every path from the root to a leaf, or to a null child, must contain the same number of black nodes (black height is the same)

Insertion

- Color of inserted node is always red by default
- The insertion is first similar to the one for BST, find the position where the node should be inserted
- Three main stages to fix violations of the rules
 - a- Color flips on the way down
 Every time the insertion routine encounters a black node that has two red children, it must change the children to black and the parent to red (unless the later is the root)
 - b- Rotations after the node is inserted
 - c- Rotations on the way down

List: 1, 2, 3, 4, 5
Lectures 22-23: Heaps

- Heap offers a fast implementation for priorityQ $\rightarrow O(\log N)$ for enqueue/dequeue
- Priority item can be the largest, smallest, etc.
- Priority queue \leftrightarrow Heap \equiv (CBT + heap cond.) \leftrightarrow array implementation
- CBT: Complete Binary Tree
- **heap condition:** every node's key is larger than (or equal to) the keys of its children.
- A heap is then weakly ordered compared to a BST
- Difference with BST: the priority item always at the root level (no need to search/traverse to locate it)
- Example of HeapArray and its CBT representation
Lectures 22-23: Heaps

- Insertion (uses trickle-up)

- Removal (uses trickle-down)

O(logN) Algorithms
Lectures 22-23: Heaps

- Heapify an array (using CBT representation): Example:
 - 1st approach: using successive insertion
 ![Diagram of heapify using successive insertion]
 - 2nd approach: using trickledown in place
 ![Diagram of heapify using trickledown in place]

O(NlogN) Algorithms - Work 'in-place'
Lectures 22-23: Heaps

- **Heapsort - Motivations**
 - It is not difficult to Heapify a random array \rightarrow cost is $O(N \log N)$
 - Removing one priority item is $O(\log N)$

 Remark: once root item is replaced by last node, only one trickledown is enough to heapify the new data
 - Removing N times (successive removals) $\rightarrow O(N \log N)$ sorting algorithm (in practice a bit slower than quicksort, but no worst case and it easy enough to implement)
 - Work in place (no additional memory)
 - Heapify + Heapsort:

    ```
    for (int i=N/2-1;i>=0;i-- ) trickleDown(i);
    ```

    ```
    for (int j=N-1;j>=0;j-- )
    {
      Node priorityNode=remove();
      heapArray[j] = priorityNode;
    }
    ```
Lectures 22-23: Heaps
Motivation: optimal insertion and search $O(1)$ (cannot traverse)

Array-based implementation

Hashing: It is a mapping that converts a 'number key' (integer, String, etc.) that belongs to a large range into a much smaller index array number.

Hash function: int hash(key)

- Simple approach: $\text{smallNumber} = \text{largeNumber} \mod \text{smallRange}$
- It is not possible to avoid collisions

Two main approaches to deal with collisions

- Open addressing
 - Use x2 size array
 - If a cell is already occupied, one must find another location
 - 3 options: Linear probing, Quadratic Probing, Double hashing
- Separate Chaining (each index of the hash table associated with linked list)

Application: Hashing Strings (Horner method and modulo operator)
Lecture 26-29: Graphs

- Graphs (non-directed/directed, weighted/unweighted) and adjacency matrix

- Graph operations:
 - 1- Depth-First Search (DFS) - using a stack
 - 2- Breadth-First Search (BFS) - using a queue
 - 3- Minimum spanning Tree (MST) (weighted)
 - 4- Shortest Path (Dijkstra) (weighted)
Lecture 26-29: Graphs- DFS

Visit: ABCDEF
Visit: ABCEFD
A in Tree
AB6, AD4
Dequeue → AD4

D in Tree
DE12, DC8, DB7, AB6
Dequeue → AB6

B in Tree
DE12, BC10, DC8, DB7, BE7
Dequeue → BE7

E in Tree
DE12, BC10, DC8, DB7, EF7, EC5
Dequeue → EC5

C in Tree
DE12, BC10, DC8, DB7, EF7, CF6
Dequeue → CF6

F in Tree
Done Tree{A, D, B, E, C, F}
Lecture 26-29: Graphs- Dijkstra

Remark: distance to D through B is 140. However, 80<140, 80A is then retained

From A to
- A: $50A$, oo, $80A$, oo
- B: $50A$, $110B$, $80A$, oo
- D: $50A$, $100D$, $80A$, $150D$
- C: $50A$, $100D$, $80A$, $140C$
- E: Done

PATHS: B (AB), D (AD), C (ADC), E (ADCE)
Lecture 30: Epilogue

DATA STRUCTURES

Array
- (1d, 2d, etc.)

Linked List
- (simple, doubly)

Unsorted list

Sorted list

Trees
- (BST, CBT, RBT)

Hash-Tables

Stacks

Queues

Heaps
- (Priority Q)

Graphs

General-purpose

Specialized (ADT)

ALGORITHMS

Insert

Remove

Search

Sort

Traverse

Pop, Push, dequeue, enqueue, etc.
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Complexity</th>
<th>Space Complexity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Sort</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$ comp.+ $O(N^2)$ swaps</td>
<td>Slow, slow, slow</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$ comp.+ $O(N)$ swaps</td>
<td>Intuitive but still slow</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$ comp.+ $O(N^2)$ copies</td>
<td>half #comp. than Bubble</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$O(N)$ total if data almost sorted</td>
</tr>
<tr>
<td>Enhanced Insertion Sort</td>
<td>$O(N^2)$</td>
<td>$O(N\log N)$ comp.+ $O(N^2)$ copies</td>
<td>Use binary search rather than linear search</td>
</tr>
<tr>
<td>List Insertion Sort</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$ comp.+ $O(N)$ copies</td>
<td>Only 2N copies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Does not work 'in-place'</td>
</tr>
<tr>
<td>MergeSort</td>
<td>$O(N\log N)$</td>
<td>$O(N)$ copies by $O(\log N)$ levels</td>
<td>Divide & Conquer + Recursive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Does not work 'in place'</td>
</tr>
<tr>
<td>ShellSort</td>
<td>$O(N(\log N)^2)$</td>
<td>In average</td>
<td>'Insertion sort' using increment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Worst case not far from average</td>
</tr>
<tr>
<td>QuickSort</td>
<td>$O(N\log N)$</td>
<td>Comp.>swaps</td>
<td>Divide and Conquer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uses partitioning recursively</td>
</tr>
<tr>
<td>HeapSort</td>
<td>$O(N\log N)$</td>
<td></td>
<td>Require a heap data-structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No worst case</td>
</tr>
</tbody>
</table>
Final Words

- Exam: Tuesday December 15- [7:45am-10am]- Marcus 131 auditorium
- Practice all algorithms, come well-prepared, do your best, no pressure
- Data Structure and Algorithms – Complement

- Hope you enjoyed the class and the projects
- C'est la fin, merci.