Weighted graphs: two 'interesting' algorithms

Minimum spanning tree (MST):
- Find cheapest set of flights that connect all airports; Cheapest installation for cable TV that connects a set of cities; Etc.
- Two schemes: Prim and Kruskal

Shortest Path Problem:
- What is the shortest (or cheapest) distance from one vertex to another, Etc.
- Etc.
MST - Prim

A in Tree
AB6, AD4
Dequeue → AD4

D in Tree
DE12, DC8, DB7, AB6
Dequeue → AB6

B in Tree
DE12, BC10, DC8, DB7, BE7
Dequeue → BE7

E in Tree
DE12, BC10, DC8, DB7, EF7, EC5
Dequeue → EC5

C in Tree
DE12, BC10, DC8, DB7, EF7, CF6
Dequeue → CF6

F in Tree
Done Tree{A, D, B, E, C, F}
The Shortest Path Problem

- Very common problem associated with weighted graphs
- Finding the 'shortest' path between two given vertices
- 'Shortest' stands for: shortest, cheapest, fastest, or best path by some other measure
- To make our approach even more general we can consider a directed weighted graph

Example:

```
A ——— $90 ——— B
  $50    $50

B ——— $60 ——— C
  $50

C ——— $40 ———

D $70

D ——— $20 ——— E
  $80

E ———

Question: 'shortest' path from A to E ?
Solution: $140 path: A-D-C-E
```
Dijkstra's algorithm

- E. Dijkstra (1959)
- Find not only the shortest path from one specified vertex to another but also the shortest paths from one specified vertex to all other vertices.
- Find shortest path 'greedily' by updating distance to all other nodes
- We need to practice with examples to describe how the algorithm works
- Variables needed to maintain information
 - Set of vertices for which shortest path is set
 - Distance to start node
 - Predecessor node for current distance (needed to reconstruct the path tree)
Dijkstra's algorithm - Example I

- From A to B C D E
- A 50A oo 80A oo
- B 50A 110B 80A oo
- D 50A 100D 80A 150D
- C 50A 100D 80A 140C
- E Done

Remark: distance to D through B is 140. However, 80<140, 80A is then retained

PATHS: B (AB), D (AD), C (ADC), E (ADCE)
Dijkstra's algorithm - Example II

- From A to B C D E
- A 10A 5A oo oo
- C 8C 14C 7C
- E 8C 13E
- B 9B
- D Done

PATHS: C (AC), B (ACB), D (ACBD), E (ACE)
Dijkstra's algorithm - Example III + applet

https://www.youtube.com/watch?v=8Ls1RqHCOPw

- **Todo:**
 - Java applet
 - GraphDW.html
Dijkstra's algorithm - pseudocode

Let us consider:
\[A = \text{source node}, \ T = \text{termination set} \]
\[D(v) = \text{current shortest distance to } v; \ w(i,j) = \text{weight of edge connecting } i \text{ and } j \]

\[T = \{A\} \]

Initialization
For all vertices
\[\text{if } v \text{ is adjacent to } A \]
\[D(v) = w(A,v) \]
\[\text{else} \]
\[D(v) = \infty \]

Loop
Find \(u \) not in \(T \) such that \(D(u) \) is a minimum
Add \(u \) to \(T \)
Update \(D(v) \) for all \(v \) adjacent to \(u \) and not in \(T \)
\[D(v) = \min[D(v), D(u) + w(u,v)] \]

Until all nodes in \(T \)
Few Words on Efficiency

- For Large Graphs (N, and E are large), we need to use a sparse storage for the matrix, if not algorithm would run in $O(N^2)$

- For unweighted graphs:
 - DFS requires $O(N+E)$

- For weighted graphs
 - MST and Dijkstra run in $O((N+E)\log N)$

- Other famous algorithm for shortest path: Floyd–Warshall algorithm but it runs in $O(N^3)$ for dense graphs

- Note on other intractable problems- Traveling Salesman Problem
 - Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
 - Examples 6 cities $\rightarrow 6! = 720$ combinations
 - This is a NP hard problem $O(2^N)$, $O(N!)$
 - Famous CS problem, 'NP=P'?