Summary Previous Lecture

- Minimum Spanning Trees
 - Subgraph that contains all \(N \) vertices of the original graph but only \(E=N-1 \) edges
 - Examples for non-directed and unweighted graphs:

- Algorithms to create a MST can be derived from DFS while keeping track of the path
- One can use either DFS or BFS, but we need to record the edges
Weighted Graphs: Motivations

- Weighted graphs → edges have weights
 - Distance
 - Dollars cost of traversal
 - Delay, etc.
- Weights make algorithms more 'interesting'

Minimum spanning tree (MST):
- Find cheapest set of flights that connect all airports
- Cheapest installation for cable TV that connects a set of cities
- Etc

Shortest Path Problem:
- What is the shortest (or cheapest) distance from one vertex to another
- Etc.
Weighted Graphs and MST

- Find a set of edges with minimum total weight that connect all nodes.
 - Not easy to 'see' the correct solution. Example:

- **Idea:**
 - Add edges that are cheap
 - Do not add edges between nodes that have already been connected (avoid redundancy)

- **Two basic algorithms** (there are greedy algorithms...making locally optimal choices at each stage)
 - Prim's algorithm (textbook)
 - Kruskal's algorithm
Initialize the tree with a single vertex (chosen arbitrarily). Then Repeat until all vertices are in the tree:

1- Find all the edges from the newest vertex to other vertices that are not in the tree. Put these edges in a priority queue (descending order)

2- Pick the edge with lowest weight, and add this edge and its destination vertex to the tree.

Example

List of edges:
- AB6, AD4,
- BC10, BE7, BD7
- CD8, CE5, CF6
- DE12, EF7

MST → 5 edges (with minimum total weight)
MST- Prim

- Start with A
 - Tree: A
 - PQ: AB6, AD4

- Dequeue → AD4

- D is current node
 - Tree: A D
 - PQ: DE12, DC8, AB6
 - Remark: DB7 not in PQ since AB6 already connects to B

 (we make sure there is no other edges going to the same destination. If there is, we keep the one with smallest weight)
MST - Prim

- Dequeue → AB6
 - B is current node
 - Tree: A D B
 - PQ: DC8, BE7
 - Remark: BC10, DE12 not in PQ

- Dequeue → BE7
 - E is current node
 - Tree: A D B E
 - PQ: EF7, EC5
 - Remark: DC8 not in PQ
MST - Prim

- Dequeue → EC5
 - C is current node
 - Tree: A D B E C
 - PQ: CF6
 - Remark: EF7 not in PQ

- Dequeue → CF6

- F is current node
 - Tree: A D B E C F

- Done
 Total weight: 4 + 6 + 7 + 5 + 6 = 28
class Edge{
 public int srcVert;
 public int destVert;
 public int distance;
 public Edge(int sv, int dv, int d){
 srcVert=sv;
 destVert=dv;
 distance=d;
 }
}

class Vertex {
 private char label; // label e.g. A,B
 public boolean isInTree;
 public Vertex (char c) {
 label = c;
 isInTree = false;
 }
}

class PriorityQ{
 private Edge[] array; // ideally one should use a heap
 private int size;
 ...
 // List of methods to implement:
 // insert, removeMin
 ...
}

class Graph {
 // Define:
 // adjacency matrix,
 // List of vertices, priorityQ, etc.
 // Two important methods:
 // 1- mstw
 // 2- putInPQ (used by mstw)
}

Complete code p681 Textbook (not optimal)
Todo:
Java applet
GraphW.html
MST- Kruskal

- Assign each vertex to its own set
- Add all edges to Priority Q
- For each edge in Priority Q (dequeue)
 - If the edge connects to different sets (and does not form a cycle) - add edge to tree
 - Merge sets

Example

- 6 vertices:
 - A B C D E F
- Priority Q
 - DE12, BC10, CD8, BE7
 - BD7, EF7, AB6, CF6, CE5, AD4
MST - Kruskal

- DE12, BC10, CD8, BE7, BD7, EF7, AB6, CF6, CE5, AD4
MST- Kruskal- other example

Step 1-
Find least-cost edge SWF-LGA: $49
MST- Kruskal- other example

Step 2-
Next least-cost edge JFK-HPN: $55

Step3 and Step4
Step 5-
Next least-cost edge ALB-LGA: $75
But causes a loop! So we skip
MST - Kruskal - other example
MST- Kruskal- other example

MST-Result
Total Cost: $874