Summary Previous Lecture

- Minimum Spanning Trees
 - Subgraph that contains all N vertices of the original graph but only $E=N-1$ edges
 - Examples for non-directed and unweighted graphs:

- Algorithms to create a MST can be derived from DFS while keeping track of the path
- One can use either DFS or BFS, but we need to record the edges
Weighted Graphs: Motivations

- Weighted graphs → edges have weights
 - Distance
 - Dollars cost of traversal
 - Delay, etc.
- Weights make algorithms more 'interesting'

Minimum spanning tree (MST):
- Find cheapest set of flights that connect all airports
- Cheapest installation for cable TV that connects a set of cities
- Etc

Shortest Path Problem:
- What is the shortest (or cheapest) distance from one vertex to another
- Etc.
Weighted Graphs and MST

- Find a set of edges with minimum total weight that connect all nodes.
 - Not easy to 'see' the correct solution. Example:

- Idea:
 - Add edges that are cheap
 - Do not add edges between nodes that have already been connected (avoid redundancy)

- Two basic algorithms (there are greedy algorithms...making locally optimal choices at each stage)
 - Prim's algorithm (textbook)
 - Kruskal's algorithm
MST- Prim

- Initialize the tree with a single vertex (chosen arbitrarily). Then
 Repeat until all vertices are in the tree:
 - **1**- Find all the edges from the newest vertex to other vertices that
 are not in the tree. Put these edges in a priority queue (descending
 order)
 - **2**- Pick the edge with lowest weight, and add this edge and its
 destination vertex to the tree.

Example

- List of edges:
 - AB6, AD4,
 - BC10, BE7, BD7
 - CD8, CE5, CF6
 - DE12, EF7

- MST → 5 edges (with minimum total weight)
- Start with A
 - Tree: A
 - PQ: AB6, AD4

- Dequeue → AD4

- D is current node
 - Tree: A D
 - PQ: DE12, DC8, AB6
 - Remark: D B7 not in PQ since AB6 already connects to B
 (we make sure there is no other edges going to the same destination. If there is, we keep the one with smallest weight)
MST - Prim

- Dequeue → AB6
 - B is current node
 - Tree: A D B
 - PQ: DC8, BE7
 - Remark: BC10, DE12 not in PQ

- Dequeue → BE7

- E is current node
 - Tree: A D B E
 - PQ: EF7, EC5
 - Remark: DC8 not in PQ
MST - Prim

- Dequeue → EC5
- C is current node
 - Tree: A D B E C
 - PQ: CF6
 - Remark: EF7 not in PQ

- Dequeue → CF6

- F is current node
 - Tree: A D B E C F
- Done
- Total weight: 4+6+7+5+6=28
class Edge{
 public int srcVert;
 public int destVert;
 public int distance;
 public Edge(int sv, int dv, int d){
 srcVert=sv;
 destVert=dv;
 distance=d;
 }
}

class Vertex {
 private char label; // label e.g. A, B
 public boolean isInTree;
 public Vertex (char c) {
 label = c;
 isInTree = false;
 }
}

class PriorityQ{
 private Edge[] array; // ideally one should use a heap
 private int size;

 ...
 ...
}

class Graph {
 // Define:
 // adjacency matrix,
 // List of vertices, priorityQ, etc.

 // Two important methods:
 // 1- mstw
 // 2- putInPQ (used by mstw)

 }
}

Complete code p681 Textbook (not optimal)
Todo:
Java applet
GraphW.html
MST- Kruskal

- Assign each vertex to its own set
- Add all edges to Priority Q
- For each edge in Priority Q (dequeue)
 - If the edge connects to different sets (and does not form a cycle) - add edge to tree
 - Merge sets

Example

- 6 vertices: A B C D E F
- Priority Q
 - DE12, BC10, CD8, BE7, BD7, EF7, AB6, CF6, CE5, AD4
MST - Kruskal

- DE12, BC10, CD8, BE7, BD7, EF7, AB6, CF6, CE5, AD4
MST - Kruskal - other example

Step 1-
Find least-cost edge SWF-LGA: $49
MST- Kruskal- other example

Step 2-
Next least-cost edge JFK-HPN: $55

Step 3 and Step 4
MST - Kruskal - other example

Step 5-
Next least-cost edge ALB-LGA: $75
But causes a loop! So we skip
MST - Kruskal - other example

The diagrams show a network of cities connected by flights with associated costs. The network is used to illustrate the concept of Minimum Spanning Trees (MST) using Kruskal's algorithm. Each edge in the network represents a flight with a cost, and the goal is to find the set of edges with the minimum total cost that connects all cities in the network.
MST- Kruskal- other example

MST-Result
Total Cost: $874