Heaps I

Lecture 22

Prof. Eric Polizzi
Motivations

- **Review of priority queue**

 - Data structure that offers convenient access to the data item with the largest (or smallest) priority key.
 - Useful for task scheduling in computers, etc.
 - It is a Abstract Data Type (ADT) that can be implemented using various underlying data structures. We have used an 'ordered array' in Lecture 9.
 - Problem with ordered array: dequeue (removal) is O(1) but enqueue (insertion) is O(N)
 - **Solution**: use a heap implementation
Motivations: Insertion and Removal for existing data structures

- **Priority Queue (ordered array)**
 - \leftrightarrow Removal of largest (smallest) key: $O(1)$
 - \leftarrow Insertion $O(N)$

- **Binary Search Tree**
 - \leftrightarrow Insertion and Removal $O(\log N)$
 - \leftarrow degenerate to $O(N)$ for unbalanced trees

- **Red-Black Tree**
 - \leftrightarrow Insertion and Removal $O(\log N)$
 - \leftarrow Complex rebalancing necessary

- **Heap**
 - \leftrightarrow Insertion and Removal of largest (smallest) key: $O(\log N)$
 - \leftrightarrow Easy to implement using an array
 - \leftrightarrow Heapsort algorithm
 - \leftarrow No easy searching, No sorted traversal
Introduction to Heap

- It is a binary tree with three characteristics
 - 1- It is a CBT (Complete Binary Tree)
 - 2- It is usually implemented as an array

Remark: Heap (ADT) → CBT → Array implementation

- 3- Each node satisfies the **heap condition:** every node's key is larger than (or equal to) the keys of its children.

- Heap or not Heap?
Heap: Array-based representation

- Since a Heap is a CBT, there is no 'holes' in the array

- Given the node with index i
 - parent’s index is $(i-1)/2$
 - left child’s index is $(2*i+1)$
 - right child’s index is $(2*i+2)$

- One needs to keep track of the current size of the array
- If current size exceeds maxSize, one needs to copy the data into a bigger array (for example x2 the size)
Heap: Comments

- CBT for HeapArray[27,23,17,14,19,6,10,7,3]

- A heap is weakly ordered compared to a BST
- Paths are independent of each others
- Searching or traversing the nodes is not practical
- At first, the ordering of nodes seems pretty awkward, but it is just sufficient to allow for fast removal of the maximum node and fast insertion of new nodes
Heap: Removal

- Removal means here removing the node with the maximum key (node with maximum priority)
- This node is always the root
- The problem is that if the root is removed, there is an empty cell and we do not have a CBT anymore. The hole must be filled in.
- 3 steps to follow:
 - 1- remove the root:
 - 2- move the last node into the root:
 - 3- trickle the last node down until it is below a larger node and above a smaller one

```java
public Node remove()
{
    Node root = heapArray[0];
    heapArray[0] = heapArray[--N];
    trickleDown(0);
    return root;
}
```
Heap: Removal - Example 1

Step 1 - Delete root 35 from heap

Step 2 - Last node 19 in root

Step 3 - Trickle down 19 (successive swaps with largest child)
How many swaps needed?
At most #levels-1 (height-1)

For N nodes, the height is $\log_2(N+1)$

So cost for deletion is $O(\log N)$
Heap: Comments on swapping

- A traditional swap requires 3 copies
- Example: 3 swaps usually mean 9 copies

- We can optimize the procedure of trickle algorithm by substituting swaps by copies
- Example: 3 successive 'swaps' can be done using 5 copies

- At the limit of large number of levels, the saving comes close to a factor 3
Heap: Insertion

- A bit easier than removal (less comparisons)
- Initially the node to be inserted is placed in the first open position of the CBT
- Insertion uses then trickle up, the node moves up until it is below a node with larger key

```java
public boolean insert(int key) {
    if (N==maxSize) return false;
    Node newNode=new Node(key);
    heapArray[N] = newNode;
    trickleUp(N++);
    return true;
}
```
Heap: Insertion- example 1

- Add new node 35 in this heap

- Trickle up 35 using successive swaps with parent until heap property is satisfied
Heap: Insertion- example 2

Cost for insertion is $O(\log N)$

Remark:
For the same set of nodes, one can generate many valid Heaps depending on the order of insertion (it is not unique).

To do: Test Java applet Heap.html
Heap: Implementation (using Recursion and swapping)

private void trickleUp(int i) {
 // reach top of heap - done
 if (i==0) return;
 // check if parent is smaller
 int parent=(i-1)/2;
 if (heapArray[i]>heapArray[parent]) {
 swap(i,parent); //swap
 trickleUp(parent); //recursion
 }
}

private void trickleDown(int i) {
 int leftChild=2*i+1;
 int rightChild=leftChild+1;
 // i is a leaf node - done
 if (leftChild>=n) return;
 // i has only a left child
 if (rightChild>=n) {
 if (heapArray[i]<heapArray[leftChild]) {
 swap(i,leftChild);
 return;
 }
 }
 // n has two children
 if (heapArray[i]<heapArray[leftChild] || heapArray[i]<heapArray[rightChild]) {
 // need to continue trickling down
 if (heapArray[leftChild]>heapArray[rightChild]) {
 // swap with left child
 swap(i,leftChild);
 trickleDown(leftChild); //recursion
 } else {
 // swap with right child
 swap(i,rightChild(i));
 trickleDown(rightChild); //recursion
 }
 }
}

For code without recursion and without swapping (using copies)- see Textbook p592