Trees IV

Lecture 21

Prof. Eric Polizzi
Summary previous lectures

Methods
- find
- insert
- delete
- Traverse (in-order, pre-order, post-order)
- show

Implementations

BST

```
<table>
<thead>
<tr>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>null</td>
</tr>
<tr>
<td>null</td>
</tr>
<tr>
<td>null</td>
</tr>
<tr>
<td>null</td>
</tr>
</tbody>
</table>
```
Binary Search Trees (BST) - Comments

- Transform a list into a binary search tree (using successive insertion):
 10, 4, 7, 15, 3, 18, 16

- Random list → balanced tree
- Search $O(\log N)$, insert $O(\log N)$, etc.

- If we now suppose that the data are already sorted or inversely sorted
 3, 4, 7, 10, 15, 16, 18

- Tree is unbalanced!
- Search $O(N)$
Binary Search Trees (BST)- Comments

- Tree becomes unbalanced or partially unbalanced if:
 - the data are (almost) sorted or inversely (almost) sorted
 - A small or large key value at a given node prevents insertion in the left or right subtree (for example a root of 3 allows only 2 nodes to be inserted on the left)
- The search procedure can degenerate to $O(N)$
- To guarantee the quick $O(\log N)$ search, we need to ensure that the tree is always balanced (each node has roughly the same number of descendents on its left side as it has on its right side).
- **Solution → Red-Black Tree**
 - It is a BST with some added features (a node can be black or red, for example using the boolean field isRed)
 - Using a Red-Black Tree balance is achieved during insertion (or deletion)
 - Red-Black are not trivial to understand and very complex to implement
Red-Black Tree rules

1. Every node is either red or black
2. The root is always black
3. If a node is red, its children must be black
4. Every path from the root to a leaf, or to a null child, must contain the same number of black nodes (black height is the same)

Examples of rule violations:
Red-Black Tree - basics

- Color of inserted node is always **red** by default
- How to fix rule violations?
 - You can change the colors of the nodes
 - You can perform rotation (re-structuration of the tree)
- Examples of basic manipulations

To do: Test Java applet RBTTree.html

- **Experiment 1** - Insert 50, 25, 75
- **Experiment 2** - Rotate right, then rotate Left
- **Experiment 3** - Insert 12...need a color flip first
Red-Black Tree- rotations

- The word rotation is misleading, it is only relationship between nodes that changes
- Simple rotation

![Simple Rotation Diagram](image)

- Crossover rotation

![Crossover Rotation Diagram](image)

The inside grandchild (here 4) of the node that leads the rotation (here 10), is always disconnected from its parents (here 3) and reconnected to its grandparent (10)
Red-Black Tree- more on rotations

- It is possible to rotate entire subtree
- The relations of the nodes within each subtree are not affected
Red-Black Tree- inserting a new node

- Color of inserted node is always red by default
- The insertion is first similar to the one for BST, find the position where the node should be inserted
- Three main stages to fix violations of the rules
 - a- Color flips on the way down
 Every time the insertion routine encounters a black node that has two red children, it must change the children to black and the parent to red (unless the later is the root)- example:

- b- Rotations after the node is inserted
- c- Rotations on the way down
Red-Black Tree- inserting a new node

- b- Rotation after the node is inserted

Three main post-insertion possibilities after inserting X

1- If P (parent) is black → here everything works fine, just insert X
2- If P is red and X is an outside grandchild of G
3- If P is red and X is an inside grandchild of G
Red-Black Tree - inserting a new node

b- Rotation after the node is inserted

2- If P is red and X is an outside grandchild of G
 i- switch the color of G (Grandparent of X)
 ii- switch the color of P (parent of X)
 iii- rotate with G at the top, in the direction that raises X

Example (after inserting 1)
Red-Black Tree- inserting a new node

- **b- Rotation after the node is inserted**
- **3- If P is red and X is an inside grandchild of G**
 - i- switch the color of G (Grandparent of X)
 - ii- switch the color of X
 - iii- rotate with P at the top, in the direction that raises X
 - iv- rotate with G at the top, in the direction that raises X

Example (After inserting 3)

1. 10
2. 4
3. 15
4. 3
5. 1
6. 4
7. 15
8. 3
9. 1
10. 10
11. 3
12. 15
13. 3
14. 4
15. 10
16. 15
Red-Black Tree- inserting a new node

- **c- Rotation on the way down**
 - Takes place before the node is inserted on the way down of the search
 - An offending node may happen (after a color flip) causing a red-red conflict

- **First Possibility (outside grandchild)**
 - i- switch the color of G (Grandparent of X- offending node)
 - ii- switch the color of P
 - iii- rotate with G at the top, in the direction that raises X

Example: insert 3

Tree is balanced!
Red-Black Tree - inserting a new node

- **c- Rotation on the way down**
- Second Possibility (inside grandchild)
 - i- switch the color of G (Grandparent of X- offending node)
 - ii- switch the color of X
 - iii- rotate with P at the top, in the direction that raises X
 - iv- rotate with G at the top, in the direction that raises X

Example: insert 28

Rq: there is another color flip 25, 50 before insertion
Tree is balanced!
Red-Black Tree - Example

Insert: 1, 2, 3, 4, 5, 6, 7, 8

1
2
3
4
5
Red-Black Tree - Example

Insert: 1, 2, 3, 4, 5, 6, 7, 8
Red-Black Tree- Example

- Tree is balanced $O(\log N)$ for search, insert, delete!
- Try the Java applet RBTree.html
- Another one available on-line: http://gauss.ececs.uc.edu/RedBlack/redblack.html