Logistics

- 242 recommendations
 - Almost a week so far and 2 HW, 1 project, lectures on arrays, oop in java, binary search and Big O notation
 - A lot of materials to cover this semester...
 - Not a lot of slides by lecture but make sure you to understand every single one of them. If you start falling behind:
 - Look at corresponding textbook pages in the website.
 - Go to office hours and discussions
- Discussion tomorrow
 - HW1 and HW2 solutions
 - Lecture questions
 - General project questions and Group project questions
- To write code/read database file:
 - Use a good editor (not notepad), or IDE (eclipse, drjava, etc.)
Summary previous lecture: binary search

Linear search

\[s = \frac{N}{2} \]

Binary search

\[s = \log_2(N) \]

<table>
<thead>
<tr>
<th>N</th>
<th>Linear search (s=N/2)</th>
<th>(\log_2(N))</th>
<th>Binary search (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>3.32</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>6.64</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>500</td>
<td>9.97</td>
<td>10</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>13.3</td>
<td>14</td>
</tr>
<tr>
<td>100,000</td>
<td>50,000</td>
<td>16.6</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>500,000</td>
<td>19.9</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>5,000,000</td>
<td>23.3</td>
<td>24</td>
</tr>
<tr>
<td>100,000,000</td>
<td>50,000,000</td>
<td>26.6</td>
<td>27</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>500,000,000</td>
<td>29.9</td>
<td>30</td>
</tr>
</tbody>
</table>

Logarithm growth rate \(\ll \) Linear growth rate
Summary previous lecture: Big O Notation

- Indicate how the running time T is affected the number of items N
- The Big O notation introduces the letter O which means “order of”
 - Cost $O(1) < O(\log N) < O(N)$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Running Time in Big O Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Binary search</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Insertion in unordered array</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insertion in ordered array</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Deletion in unordered array</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Deletion in ordered array</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
Big O Notation and Running Time

- **Algorithm A is O(N)** ... For a given N, Algo A runs in \(x\) seconds
 - If \(N \leftarrow 2*N\), it would run in \(2\times x\) seconds
 - If \(N \leftarrow 10*N\), it would run in \(10\times x\) seconds
 - If \(N \leftarrow N*N\), it would run in \(N\times x\) seconds

- **Algorithm B is O(logN)**.. For a given N (large), Algo B runs in \(x\) seconds
 - If \(N \leftarrow 2*N\), it would run in \(~x\) seconds
 - If \(N \leftarrow 10*N\), it would run in \(~x\) seconds
 - If \(N \leftarrow N*N\), it would run in \(2\times x\) seconds

- **Algorithm C is O(N^2)**... For a given N, Algo C runs in \(x\) seconds
 - If \(N \leftarrow 2*N\), it would run in \(4\times x\) seconds
 - If \(N \leftarrow 10*N\), it would run in \(100\times x\) seconds
 - If \(N \leftarrow N*N\), it would run in \(N^2\times x\) seconds

Cost: Algo B < Algo A < Algo C

\[O(\log N) < O(N) < O(N^2)\]
Big O Notation

- Improve Running Time
- Increase Complexity
Big O Notation – Asymptotic Analysis

- Constants and lower degrees are ignored
- Capture the complexity for large N

- \(N/2\) \(O(N)\)
- \(3N^2+15N\) \(O(N^2)\)
- \(0.00001*N^2+15000*N\) \(O(N^2)\)
- \(N^2*N+10*N^2\log(N)\) \(O(N^3)\)
- \(123+\log(321)\) \(O(1)\)
- \((N+\log(N))^2\) \(O(N^2)\)
- \(N*(5+\log(N))\) \(O(N\log N)\)
- \(1+2+3+...+N\) \(=N(N+1)/2\) \(O(N^2)\)
Big O Notation - Examples

- **Example 1**
  ```
  for (int i=0;i<N;i++) {
  //do something
  }
  ```
 - \{i=0,i=1,i=2,i=3,...,i=N\} == O(N)

- **Example 2**
  ```
  for (int i=0;i<N;i++) {
    for (int j=0; j<N; j++) {
      //do something
    }
  }
  ```
 - N steps for outer loop, N steps for inner loop == O(N^2)

- **Example 3**
  ```
  for (int i=N;i>0;i=i/2) {
    //do something
  }
  for (int i=1;i<=N;i=i*2) {
    //do something
  }
  ```
 - \{i=N,i=N/2,i=N/4,i=N/8,...,i=1\} == \log_2(N)\) steps is O(logN)
 - \{i=1,i=2,i=4,i=8,i=16,..,i=N\} == \log_2(N)\) steps is O(logN)
Big O Notation - Examples

- **Example 5**

  ```java
  for (int i=0; i<N; i++){
    for (int j=0; j<i; j++){
      //do something
    }
  }
  ```

 N steps outer loop, inner loop constant number of steps \(== O(N)\)

- **Example 4**

  ```java
  for (int i=0; i<N; i++){
    for (int j=0; j<i; j++){
      //do something
    }
  }
  ```

 Number of steps \(s\) in inner loop

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>N-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>N-1</td>
</tr>
</tbody>
</table>

Summing all the inner loop steps

\[0+1+2+3+...+(N-1)=\frac{N(N-1)}{2}=\frac{N^2}{2}-\frac{N}{2}\implies O(N^2)\]
Classes of Algorithm Complexity

- $O(1)$ constant
- $O(\log N)$ logarithmic growth
- $O(N)$ linear growth
- $O(N \log N)$ loglinear growth
- $O(N^2)$ quadratic growth
- $O(N^3)$ cubic growth
- $O(2^N)$ exponential growth
Cost analysis: $O(1) < O(\log N) < O(N) < O(N^2) < O(N^3) < O(2^n)$

More to the story (concepts beyond this class but good to have in mind)

- N small: $O(N^3)$ algorithms can better exploit data locality in memory
- N large: $O(N)$ algorithms most likely respond better to parallelism
Arrays: Take Home

- **Array have fixed size** – good estimate of the number of items needed
- A higher level class can be designed to make things simple for the class user (handles privately indexes and number of items)
- Unordered arrays offer
 - fast insertion $O(1)$
 - but slow linear search and deletion $O(N)$
- Ordered arrays arrays offer
 - fast binary search $O(\log N)$
 - but slow insertion and deletion $O(N)$
- **Ordered array** useful in situation where once the array is ordered, search are very frequent but insertion/deletion are not
 - Example: search words in dictionary
- The **Big O notation** provides information about the algorithm complexity, relative running time performances between algorithms