Arrays

Lecture 3

Prof. Eric Polizzi
Summary previous lecture: binary search

Linear search \[s = \frac{N}{2} \]

Binary search \[s = \log_2(N) \]

<table>
<thead>
<tr>
<th>N</th>
<th>Linear search (s=N/2)</th>
<th>(\log_2(N))</th>
<th>Binary search (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>3.32</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>6.64</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>500</td>
<td>9.97</td>
<td>10</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>13.3</td>
<td>14</td>
</tr>
<tr>
<td>100,000</td>
<td>50,000</td>
<td>16.6</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>500,000</td>
<td>19.9</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>5,000,000</td>
<td>23.3</td>
<td>24</td>
</tr>
<tr>
<td>100,000,000</td>
<td>50,000,000</td>
<td>26.6</td>
<td>27</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>500,000,000</td>
<td>29.9</td>
<td>30</td>
</tr>
</tbody>
</table>

Logarithm growth rate << Linear growth rate
Summary previous lecture: Big O Notation

- Indicate how the running time T is affected by the number of items N
- The Big O notation introduces the letter O which means “order of”
 - Cost $O(1) < O(\log N) < O(N)$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Running Time in Big O Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Binary search</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Insertion in unordered array</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insertion in ordered array</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Deletion in unordered array</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Deletion in ordered array</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
Big O Notation and Running Time

- **Algorithm A is O(N)** ... For a given N, Algo A runs in x seconds
 - If N ← 2*N, it would run in 2*x seconds
 - If N ← 10*N, it would run in 10*x seconds
 - If N ← N*N, it would run in N*x seconds

- **Algorithm B is O(logN)**. For a given N (large), Algo B runs in x seconds
 - If N ← 2*N, it would run in ~x seconds
 - If N ← 10*N, it would run in ~x seconds
 - If N ← N*N, it would run in 2*x seconds

- **Algorithm C is O(N^2)**... For a given N, Algo C runs in x seconds
 - If N ← 2*N, it would run in 4*x seconds
 - If N ← 10*N, it would run in 100*x seconds
 - If N ← N*N, it would run in N^2*x seconds

Cost:

Algo B < Algo A < Algo C

O(logN) < O(N) < O(N^2)
Big O Notation

- $O(N^2)$
- $O(N)$
- $O(\log N)$
- $O(1)$

Improve Running Time
Increase Complexity
Big O Notation – Asymptotic Analysis

- Constants and lower degrees are ignored
- Capture the complexity for large N (at the limit of large N)
 - \(\frac{N}{2} \) \(\mathcal{O}(N) \)
 - \(3N^2 + 15N \) \(\mathcal{O}(N^2) \)
 - \(0.00001N^2 + 15000N \) \(\mathcal{O}(N^2) \)
 - \(N^2N + 10N^2\log(N) \) \(\mathcal{O}(N^3) \)
 - \(123 + \log(321) \) \(\mathcal{O}(1) \)
 - \((N + \log(N))^2 \) \(\mathcal{O}(N^2) \)
 - \(N \times (5 + \log(N)) \) \(\mathcal{O}(N\log N) \)
 - \(1 + 2 + 3 + \ldots + N \) \(= \frac{N(N+1)}{2} \mathcal{O}(N^2) \)
Big O Notation - Examples

- **Example 1**

  ```java
  for (int i=0; i<N; i++){
    //do something
  }
  ```

 `{i=0,i=1,i=2,i=3,...,i=N} == O(N)`

- **Example 2**

  ```java
  for (int i=0; i<N; i++){
    for (int j=0; j<N; j++){
      //do something
    }
  }
  ```

 `N` steps for outer loop, `N` steps for inner loop == O(N^2)

- **Example 3**

  ```java
  for (int i=N; i>0; i/=2){
    //do something
  }
  ```

 `{i=N,i=N/2,i=N/4,i=N/8,...,i=1} == \log_2(N) \text{ steps is } O(\log N)`

  ```java
  for (int i=1; i<=N; i*=2){
    //do something
  }
  ```

 `{i=1,i=2,i=4,i=8,i=16,..,i=N} == \log_2(N) \text{ steps is } O(\log N)`
Big O Notation - Examples

- Example 5

```
for (int i=0; i<N; i++){
    for (int j=0; j<10000; j++){
        //do something
    }
}
```

- N steps outer loop, inner loop constant number of steps \(\Rightarrow O(N) \)

- Example 4

```
for (int i=0; i<N; i++){
    for (int j=0; j<i; j++){
        //do something
    }
}
```

- Number of steps \(s \) in inner loop

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>N-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>N-1</td>
</tr>
</tbody>
</table>

- Summing all the inner loop steps

\[0+1+2+3+...+(N-1) = N\times(N-1)/2 = \frac{N^2}{2} - N/2 \quad \Rightarrow O(N^2) \]
Practice (from previous midterm)....

```c
for (int i=1;i<N;i=i*2){
    //do something
}
```

```c
for (int i=0;i<N*N;i++){
    //do something
}
```

```c
for (int i=0;i<N;i++){
    for (int j=0;j<i;j++){
        for (int k=0;k<10;k++){
            //do something
        }
    }
}
```

```c
for (int i=N;i>0;i--){
    //do something
}
```

```c
//here we consider two variables input N and M
for (int i=1;i<N;i++){
    for (int j=0;j<M;j++){
        //do something
    }
}
```

```c
for (int i=N;i>0;i/=2){
    for (int j=1;j<N;j=j*2){
        //do something
    }
}
```
Classes of Algorithm Complexity

- **O(1)** constant
- **O(logN)** logarithmic growth
- **O(N)** linear growth
- **O(NlogN)** loglinear growth
- **O(N^2)** quadratic growth
- **O(N^3)** cubic growth
- **O(2^N)** exponential growth
Algorithm Complexity: Discussion on Performances

- **Cost analysis:** \(O(1) < O(\log N) < O(N) < O(N^2) < O(N^3) < O(2^n) \)
- **More to the story** (concepts beyond this class but good to have in mind)
 - **N small:** \(O(N^3) \) algorithms can better exploit data locality in memory
 - **N large:** \(O(N) \) algorithms most likely respond better to parallelism

![Cost comparison diagram](image)
Arrays: Take Home

- **Array have fixed size** – good estimate of the number of items needed
- A higher level class can be designed to make things simple for the class user (handles privately indexes and number of items)
- Unordered arrays offer
 - fast insertion O(1)
 - but slow linear search and deletion O(N)
- Ordered arrays offer
 - fast binary search O(logN)
 - but slow insertion and deletion O(N)
- **Ordered array** useful in situation where once the array is ordered, search are very frequent but insertion/deletion are not
 - Example: search words in dictionary
- The **Big O notation** provides information about the algorithm complexity, relative running time performances between algorithms