Arrays

Lecture 2

Prof. Eric Polizzi
Summary previous lecture

- **Array**: most commonly used data storage structure
- Collection of primitives variables (int, double, etc.) or objects with fixed size.
 - Example: with generic type
    ```java
    type[] array = new type[MaxItem];
    ```
- Number of active items $N \leq \text{MaxItem}$
 - Example: $\text{MaxItem}=10$; $N=5$
- Basic operations on arrays: insert (initialization), permute, shift, **linear search**, delete, etc
- Higher level interfaces for Arrays via Object Oriented Programming

```java
HighArray array = new HighArray(MaxItem);
```  ```java
type[] array = new type[MaxItem];
```  ```java
int Nelems;
```  ```java
```java
Class handles index numbers and number of current items privately
- Ordered arrays allow the use of very fast **binary search** algorithm
Binary Search

- **Analogy:** The *guess-a-number* game!
  - Choose a number between 1-100

- Ok Let me guess....
  - (1-100) 50? ......................... nope too high
  - (1-49) 25? ......................... nope too low
  - (26-49) 37? ......................... nope too high
  - (26-36) 31? ......................... nope too low
  - (32-36) 34? ......................... nope too high
  - (32-33) 32? ......................... nope too low
  - (33-33) 33? .........................Correct!
public int find(long searchKey) {
    int lowerBound = 0;
    int upperBound = nElems - 1;
    int curIn;
    while (true) {
        curIn = (lowerBound + upperBound) / 2;
        if (a[curIn] == searchKey)
            return curIn; // found it
        else if (lowerBound > upperBound)
            return nElems; // can't find it
        else // divide range
            { // end else divide range
                if (a[curIn] < searchKey)
                    lowerBound = curIn + 1; // in upper half
                else
                    upperBound = curIn - 1; // in lower half
            } // end else divide range
    } // end while
} // end find()
Binary Search: Number of steps?

- In the worst case scenario, the algorithm progresses until one item is left in the search range.
- In practice, at each step the range of values is approximately divided by 2 (+ or – 1 item).
- In theory, we can consider that the number of items $N$ keeps being exactly divided by 2 until approximately one item is left.
  - Example $N=100$

<table>
<thead>
<tr>
<th>Step $s$</th>
<th>$N$ ?</th>
<th>Number of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$100/2 = 50.0000$</td>
<td>$(N/2^1)$</td>
</tr>
<tr>
<td>2</td>
<td>$50/2 = 25.0000$</td>
<td>$(N/2^2)$</td>
</tr>
<tr>
<td>3</td>
<td>$25/2 = 12.5000$</td>
<td>$(N/2^3)$</td>
</tr>
<tr>
<td>4</td>
<td>$12.5/2 = 6.25000$</td>
<td>$(N/2^4)$</td>
</tr>
<tr>
<td>5</td>
<td>$6.25/2 = 3.12500$</td>
<td>$(N/2^5)$</td>
</tr>
<tr>
<td>6</td>
<td>$3.125/2 = 1.56250$</td>
<td>$(N/2^6)$</td>
</tr>
<tr>
<td>7</td>
<td>$1.5625/2 = 0.78125$</td>
<td>$(N/2^7)$</td>
</tr>
</tbody>
</table>
Mathematically, the number of steps $s$ needed must satisfy:

$$\frac{N}{2^s} = 1$$

**Problem:** N is given, find $s$ such that $N = 2^s$

- $\log(N) = s \log(2)$
- $\log=\ln=\log_e$ is the **natural log** $\log(e)=1$ [log base e]

$$s = \frac{\log(N)}{\log(2)} = \log_2(N)$$

[log base 2]

$\log_2(2)=1$
### Linear vs Binary Search

**Linear search**

\[ s = \frac{N}{2} \]

**Binary search**

\[ s = \log_2(N) \]

<table>
<thead>
<tr>
<th>N</th>
<th>Linear search s=N/2</th>
<th>( \log_2(N) )</th>
<th>Binary search s</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>3.32</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>6.64</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>500</td>
<td>9.97</td>
<td>10</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>13.3</td>
<td>14</td>
</tr>
<tr>
<td>100,000</td>
<td>50,000</td>
<td>16.6</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>500,000</td>
<td>19.9</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>5,000,000</td>
<td>23.3</td>
<td>24</td>
</tr>
<tr>
<td>100,000,000</td>
<td>50,000,000</td>
<td>26.6</td>
<td>27</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>500,000,000</td>
<td>29.9</td>
<td>30</td>
</tr>
</tbody>
</table>

Logarithm growth rate << Linear growth rate
Comments on Running Time

- **Question:** How efficient an Algorithm is?
- Some "not-so meaningful" statements
  - This algorithm converges in 10 seconds
    ...don't computers have different speed?
  - Algorithm A is twice faster than B
    ...would it still be the case if the number of items N changes?
- **Solutions:**
  - **Empirical approach**
    Implement all algorithms and perform all the testings/comparisons
    ...inefficient strategy
  - **Analytical approach**
    Analysis of the algorithm complexity to understand its capabilities
    ...knowing in advance if an algorithm is worth implementing
Comments on Running Time

- Time to insert in an unordered array
  - $T = K$
  - $K$ is a constant related to speed of processor, compiler efficiency, etc. to perform the single operation of insertion

- Linear search
  - $T = K \times \frac{N}{2}$ (average number of comparisons)
  - $K/2$ is a constant (the factor 2 can be lumped into the $K$)
  - It comes $T = K \times N$

- Binary Search
  - $T = K \times \log_2(N)$
  - $K$ is a constant (the factor $\log(2)$ can be lumped into the $K$)
  - It comes $T = K \times \log(N)$
Big O Notation

- All that really matter is how the running time T is affected the number of items N (the constant K is not meaningful)
- The Big O notation introduces the letter O which means “order of”
  - Insertion in unordered array \( O(1) \) (it means constant)
  - Linear search \( O(N) \)
  - Binary search \( O(\log N) \)
- Cost: \( O(1) < O(\log N) < O(N) \) (excellent > good > fair)

**TABLE 2.5** Running Times in Big O Notation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Running Time in Big O Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td>( O(N) )</td>
</tr>
<tr>
<td>Binary search</td>
<td>( O(\log N) )</td>
</tr>
<tr>
<td>Insertion in unordered array</td>
<td>( O(1) )</td>
</tr>
<tr>
<td>Insertion in ordered array</td>
<td>( O(N) )</td>
</tr>
<tr>
<td>Deletion in unordered array</td>
<td>( O(N) )</td>
</tr>
<tr>
<td>Deletion in ordered array</td>
<td>( O(N) )</td>
</tr>
</tbody>
</table>
Big O Notation

The graph shows the relationship between the number of steps and the number of items (N). The different lines represent different time complexities:

- **0(1)**: Constant time complexity.
- **0(log N)**: Logarithmic time complexity.
- **0(N)**: Linear time complexity.
- **0(N^2)**: Quadratic time complexity.

As the number of items increases, the number of steps increases at different rates for each complexity. This helps in understanding the scalability and efficiency of algorithms.