Logistics

- If you still need to find a partner for the project:
 - Answer my e-mail by 5pm today
 - Indicate your discussion sections
 - **1**: 10-11:15
 - **2**: 11:30-12:45
 - **3**: 1-2:15pm
- Office hours start tomorrow
- New HW later today- solution on Thursday
Summary previous lecture

- **Array**: most commonly used data storage structure
- Collection of primitives variables (int, double, etc.) or objects with fixed size.
 - Example: with generic type

    ```java
    type[] array = new type[MaxItem];
    ```
 - Number of active items $N \leq MaxItem$
 - Example: $MaxItem=10$; $N=5$

 ![Array Example](image)
 - Basic operations on arrays: insert (initialization), permute, shift, **linear search**, delete, etc
 - Higher level interfaces for Arrays via Object Oriented Programming

    ```java
    HighArray array = new HighArray(MaxItem);
    type[] array = new type[MaxItem];
    int Nelems;
    ```

Class handles index numbers and number of current items privately

- Ordered arrays allow the use of very fast **binary search** algorithm
- **Analogy**: The *guess-a-number* game!
 - Choose a number between 1-100

 - Ok Let me guess....
 - (1-100) 50? .. nope too high
 - (1-49) 25? .. nope too low
 - (26-49) 37? .. nope too high
 - (26-36) 31? .. nope too low
 - (32-36) 34? .. nope too high
 - (32-33) 32? .. nope too low
 - (33-33) 33? .. Correct!
Linear vs Binary Search

- For Fun
 - Not so good: https://www.youtube.com/watch?v=oc9H8bo8yg0
 - Much better (2 min into movie) https://www.youtube.com/watch?v=REhqoLlRJwY
- To do: Test Java applet Ordered.html
public int find(long searchKey) {
 int lowerBound = 0;
 int upperBound = nElems-1;
 int curIn;
 while (true) {
 curIn = (lowerBound + upperBound) / 2;
 if (a[curIn] == searchKey)
 return curIn; // found it
 else if (lowerBound > upperBound)
 return nElems; // can't find it
 else // divide range
 { // end else divide range
 if (a[curIn] < searchKey)
 lowerBound = curIn + 1; // in upper half
 else
 upperBound = curIn - 1; // in lower half
 } // end else divide range
 } // end while
} // end find()
Binary Search: Number of steps?

- In the worst case scenario, the algorithm progresses until one item is left in the search range.
- In practice, at each step the range of values is approximately divided by 2 (+ or – 1 item).
- In theory, we can consider that the number of items N keeps being exactly divided by 2 until approximately one item is left.
 - Example $N=100$

<table>
<thead>
<tr>
<th>Step s</th>
<th>$N/2^s$</th>
<th>Number of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100/2 = 50.0000 ($N/2^1$)</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50/2 = 25.0000 ($N/2^2$)</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25/2 = 12.5000 ($N/2^3$)</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>12.5/2 = 6.25000 ($N/2^4$)</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>6.25/2 = 3.12500 ($N/2^5$)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3.125/2 = 1.56250 ($N/2^6$)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1.5625/2 = 0.78125 ($N/2^7$)</td>
<td>1</td>
</tr>
</tbody>
</table>
Binary Search: Number of steps?

- Mathematically, the number of steps s needed must satisfy:
 \[
 \frac{N}{2^s} = 1
 \]

- **Problem**: N is given, find s such that

 $N = 2^s$

 - $\log(N) = s \log(2)$
 - $\log=\ln=\log_e$ is the **natural log** $\log(e)=1$ [log base e]

 $s = \frac{\log(N)}{\log(2)} = \log_2(N)$ [log base 2]

 $\log_2(2)=1$
Linear vs Binary Search

Linear search

$s = \frac{N}{2}$

Binary search

$s = \log_2(N)$

<table>
<thead>
<tr>
<th>N</th>
<th>Linear search $s=N/2$</th>
<th>$\log_2(N)$</th>
<th>Binary search s</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>3.32</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>6.64</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>500</td>
<td>9.97</td>
<td>10</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>13.3</td>
<td>14</td>
</tr>
<tr>
<td>100,000</td>
<td>50,000</td>
<td>16.6</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>500,000</td>
<td>19.9</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>5,000,000</td>
<td>23.3</td>
<td>24</td>
</tr>
<tr>
<td>100,000,000</td>
<td>50,000,000</td>
<td>26.6</td>
<td>27</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>500,000,000</td>
<td>29.9</td>
<td>30</td>
</tr>
</tbody>
</table>

Logarithm growth rate \ll Linear growth rate
Comments on Running Time

Question: How efficient an Algorithm is?

Some "not-so meaningful" statements
- This algorithm converges in 10 seconds

 ...don't computers have different speed?
- Algorithm A is twice faster than B

 ...would it still be the case if the number of items N changes?

Solutions:

- **Empirical approach**

 Implement all algorithms and perform all the testings/comparisons

 ...inefficient strategy

- **Analytical approach**

 Analysis of the algorithm complexity to understand its capabilities

 ...knowing in advance if an algorithm is worth implementing
Comments on Running Time

- Time to insert in an unordered array
 - $T = K$
 - K is a constant related to speed of processor, compiler efficiency, etc. to perform the single operation of insertion

- Linear search
 - $T = K \times N/2$ (average number of comparisons)
 - $K/2$ is a constant (the factor 2 can be lumped into the K)
 - It comes $T = K \times N$

- Binary Search
 - $T = K \times \log_2(N)$
 - K is a constant (the factor $\log(2)$ can be lumped into the K)
 - It comes $T = K \times \log(N)$
Big O Notation

- All that really matter is how the running time T is affected the number of items N (the constant K is not meaningful)

- The Big O notation introduces the letter O which means “order of”
 - Insertion in unordered array $O(1)$ (it means constant)
 - Linear search $O(N)$
 - Binary search $O(\log N)$

- Cost: $O(1) < O(\log N) < O(N)$ (excellent > good > fair)

TABLE 2.5 Running Times in Big O Notation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Running Time in Big O Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Binary search</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Insertion in unordered array</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insertion in ordered array</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Deletion in unordered array</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Deletion in ordered array</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
Big O Notation