a) \[\sigma_r = \frac{1}{r} \frac{\partial}{\partial r} \left(r \phi \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \phi, \theta \]

\[= 0 + 0 \]

\[\sigma_r = 0 \]

\[\tau_\theta = \frac{\partial}{\partial r} \phi, r \]

\[\tau_\theta = -\left(\frac{1}{r} \phi, \theta \right), r \]

\[\tau_\theta = \frac{c}{r^2} \]

b) In a ring \(a < r < b \)

The moment generated at \(r = b \) is clockwise

\[M_b = \tau_\theta \frac{2\pi}{b} \]

\[= \frac{c}{b} \frac{2\pi}{b} = \frac{2\pi c}{b} \]

The moment at \(r = a \) is

\[M_a = -\tau_\theta \frac{2\pi}{a} \]

\[= -\frac{c}{a^2} \frac{2\pi}{a} = \frac{-2\pi c}{a^2} \]

The signs result from the normal vectors at \(r = a \) and \(r = b \) pointing in different directions.
these moments are in static equilibrium

Note that these moments are independent of \(a, b\). Therefore, despite the fact that \(a_0 \to b \to \infty\)
\(T \to 0\), and as \(a \to 0\) \(T \to \infty\), the moments remain in equilibrium.

at \(r=0\) in the infinite plate we have a singularity in the stress.

\[\gamma_{r\theta} = \frac{T_{r\theta}}{G} = \frac{C}{r^2 G} \]

\[\varepsilon_r = \varepsilon_\theta = 0 \]

Since \(\varepsilon_r = u_r, r = 0\)

\[u = \varepsilon_\theta f(\theta) \]

but this problem is axisymmetric, so that all parts of the solution must be independent of \(\theta\). We conclude that \(f(\theta) = 0\)

and \(u = 0\)

Now, \(\varepsilon_\theta = 0 = \frac{V_r \theta}{r} + \frac{u_r \theta}{r}\)

so \(V_r \theta = 0\)

\[V = f(r) \]

Also, \(\gamma_{r\theta} = \frac{C}{r^2 G} = V_r + u_\theta - \frac{V}{r}\)

\[\alpha \quad \frac{V_r - \frac{V}{r}}{r} = \frac{C}{r^2 G} \]

Since we know from above that \(V = f(r)\), we can write \(V_r\) as \(V'\).
we must solve
\[r^2 V' - rv = \frac{C}{G} \]

Homogeneous part

Let \(V_h = C_1 r \)

\[V' = C_1 \]

\[r^2 (C_1) - r (C_1 r) = 0 \]

Particular part

Let \(V_p = C_2 r^{-2} \)

\[V' = -C_2 r^{-3} \]

\[r^2 \left(\frac{-C_2}{r^2} \right) - r \left(\frac{C_2}{r} \right) = \frac{C}{G} \]

\[-2 C_2 = \frac{C}{G} \]

\[C_2 = -\frac{C}{2G} \]

\[V = V_h + V_p \]

\[= C_1 r + \left(-\frac{C}{2G} \frac{1}{r} \right) = C_1 r - \frac{C}{2Gr} \]

b.c. \(V(a) = 0 \)

\[C_1 a - \frac{C}{2Ga} = 0 \]

\[C_1 = \frac{C}{2Ga^2} \]

\[V = \frac{Cr}{2Ga^2} - \frac{C}{2Gr} \]
\[\phi = C \left[r^2(\alpha - \theta) + r^2 \sin \theta \cos \theta - r^2 \cos \theta + \tan \alpha \right] \]

a) \[J_r = 2C (\alpha - \theta - \sin \theta \cos \theta - \sin \theta \tan \alpha) \]

\[J_\theta = 2C (\alpha - \theta + \sin \theta \cos \theta - \cos \theta + \tan \alpha) \]

\[\tau_{\rho} = C - C \cos(2\theta) - C \tan \alpha \sin(2\theta) \]

b.c: \[\alpha = \alpha \]

\[J_\theta = \tau_{\rho} = 0 \]

\[J_\theta (\alpha) = 2C (\sin \alpha \cos \alpha - \cos \alpha \tan \alpha) = 0 \checkmark \]

\[\tau_{\rho} (\alpha) = C - C \cos 2\alpha - C \tan \alpha \sin 2\alpha = 0 \checkmark \]

\[\tau_{\rho} = C - C = 0 = 0 \checkmark \]

\[\tau_{\rho} = 2C (\alpha + \theta - \tan \alpha) = q \]

\[= 2C (\alpha - \tan \alpha) \]

\[C = \frac{q}{2(\alpha - \tan \alpha)} \]
b/c \[\alpha = 20^\circ \]

Find a section \(mn \) and draw stresses.

\[
\begin{align*}
\tan \theta &= \frac{y}{x} \\
x &= c_2 \\
y &= c_0 + \theta \\
x &= c_0 + x \tan \theta
\end{align*}
\]

\[
r = \sqrt{x^2 + y^2}
\]

\[
r = c_2 + y^2
\]

\[
\phi = r \sin \theta
\]

\[
r = \sqrt{c_2^2 + r^2 \sin^2 \theta}
\]

\[
r^2 = c_2^2 + r^2 \sin^2 \theta
\]

\[
r^2 (1 - \sin^2 \theta) = c_2^2
\]

\[
r^2 = \frac{c_2^2}{\cos^2 \theta}
\]

\[
r = \frac{c_2}{\cos \theta}
\]

get \(\sigma_x, \tau_{xy} \) intermed \(\sigma_x, \tau_{xy} \)
\[\sigma_x = \sigma_r \cos^2 \theta + \sigma_0 \sin^2 \theta - 2 \tau_{\theta \phi} \sin \theta \cos \theta \]

\[\tau_{xy} = (\sigma_r - \sigma_0) \sin \theta \cos \theta + \tau_{\theta \phi} (\cos^2 \theta - \sin^2 \theta) \]

\[\sigma_x = \frac{2 \xi \alpha - 2 \xi \theta - \xi \sin (2 \theta)}{2 \alpha - 2 \tan \alpha} \]

\[\tau_{xy} = \frac{\xi \cos 2 \theta - \xi}{2 \alpha - 2 \tan \alpha} \]

Both independent of \(r \)!!
Note $\tau_{xy} \neq 0$ at the bottom surface due to change from polar to Cartesian.

Note: Beam theory solution is based on $\tau = \frac{M_y}{I}$

$\tau = \frac{VQ}{I_t}$