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ABSTRACT

A new model for the tensor dissipation term of the

Reynolds stress equations is derived. This model extends

classical dissipation models into the near wall region in

a mathematically sound and physically appropriate way.

Comparisons with direct numerical simulation data con-

�rm the e�cacy of the model.

INTRODUCTION

The majority of Reynolds stress equation models are

implicitly or explicitly based on the assumption that tur-

bulence is quasi-homogeneous. Many also assume some

sort of quasi-isotropy. These assumptions break down

dramatically in the presence of walls where turbulence

is known to be highly inhomogeneous and anisotropic.

Since the near wall region is vital to almost all engineer-

ing calculations this situation must be remedied, and the

history of turbulence modeling is full of various propos-

als on how best to alter existing models so that they will

perform reasonably in the near wall region.

This brief paper will add to that debate, but focus on

the near wall modeling of only one term of the Reynolds

stress equations, the tensor dissipation. Using a sim-

ple mathematical decomposition an equation will be de-

veloped that decomposes the dissipation into a homoge-

neous term, an inhomogeneous term, and some redistri-

bution terms. It will then be shown that this equation

can be used to derive models for the dissipation. These

models satisfy a number of important physical and math-

ematical constraints and give very good agreement with

simulation data, particularly in the near wall region.

DISSIPATION TENSOR

The dissipation term of the Reynolds stress equations

is responsible for the damping of turbulent intensities.

For an incompressible, constant property 
uid, it is writ-

ten in cartesian tensor notation as,
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where u is the 
uctuating velocity, � is the kinematic

viscosity, an overbar denotes an ensemble average, and

repeated indices imply summation. In the context of

Reynolds stress modeling the average quantity on the

right hand side is unknown and must be modeled in terms

of the mean velocities U

i

, and Reynolds stresses R

ij

=

u

i

u

j

.

Considerable headway can be made towards this end

by rewriting the dissipation equation. The starting point

for this transformation, which is purely mathematical

in nature, is a decomposition of the 
uctuating velocity

given by,
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An overbar has been placed on the tensor function Q

ik

to emphasize that this function is a statistical average.

Eventually it will be speci�ed in terms of known quanti-

ties. The quantity ~u

k

will be referred to as the rescaled


uctuating velocity. It contains all the random statistical

variations of the original velocity �eld, and its properties

will become clearer when the scaling function Q

ik

is pre-

cisely de�ned.

Substituting this decomposition into the original dis-

sipation de�nition, and using the fact that Q

ij

is a statis-

tic and can therefore be extracted from any further av-

eraging, results in an expression of the form,
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where the tensor W

mnk

= (~u

m

~u

n;k

� ~u

m;k

~u

n

) is anti-

symmetric in m and n. Although initially daunting, this

equation for the dissipation is quite straightforward. The

�rst term is the contribution to the dissipation due to

the inhomogeneity of the turbulence. The second term

involves the renormalized dissipation, and accounts for

the dissipation due to statistical 
uctuations. Finally,

the last two terms are redistribution terms that will be

discussed in more detail within the text.

The �rst two terms of equation (3) reveal the pur-

pose of this mathematical manipulation of the dissipa-

tion equation. By isolating the inhomogeneity of the

turbulence in the statistic Q

ij

, the inhomogeneous con-

tributions to the dissipation can be explicitly determined.

This transformation also leaves the renormalized veloc-



ity looking very much like isotropic, homogeneous tur-

bulence. Classical quasi-homogeneous models can then

be expected to perform reasonably well for the statis-

tics of the renormalized velocity. In this manner, quasi-

homogeneous models can be extended into strongly inho-

mogeneous regions in a mathematically sound way, and

with surprisingly good results. The following section

makes this clear.

BASIC DISSIPATION MODEL

The simplest renormalization choice is Q

ij

= q�

ij

,

where q = (R

kk

)

1=2

. This means that ~u
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j
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, and

the dissipation equation becomes,
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where L

�2

ij

= ~u

i;k
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. Fortuitously the third term of

equation (3), involving the unknown antisymmetric ten-

sor W

mnk

has vanished, and only the symmetric tensor

L

�2

ij

, with the units of inverse length squared, must be

modeled. In essence, equation (4) abstracts the problem

of modeling the dissipation to the problem of modeling

the renormalized dissipation, ~u

i;k

~u

j;k

. It is expected that

the renormalized dissipation will be much more amenable

to quasi-homogeneous dissipation models than the dissi-

pation itself.

Two classical quasi-homogeneous dissipation models

are �
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= T
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q
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(Rotta, 1951). Usu-

ally the inverse time scale is given by T

�1

=

�

ii

q

2

, which

is exact in the homogeneous, isotropic limit. However,

this choice for the inverse time scale is incorrect in the

near wall region, because it becomes singular. Since the

�rst two terms of equation (4) already account for the

near wall region, a much better approximation (one used

for the numerical tests of this model), is that the inverse

time scale varies only slightly across the thin near wall

region and can be approximated by its value at the far

edge of that region. With this in mind, the correspond-

ing models for the length scale tensor are L
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=
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, where T

�1

is found from

�

ii

q

2

far from

the wall.

It is important that models have the correct asymp-

totic behavior as they approach the wall (Launder &

Reynolds, 1983). For instance, at the wall the trans-

verse components of the dissipation (�

11

and �

33

) must

exactly balance the corresponding di�usion components

or turbulence will spuriously be created by the wall. For-

tunately, an asymptotic expansion of this model about a

no-slip wall shows that the leading coe�cient of every

component of the model is exact (except the wall nor-

mal component �

22

, which has the right behavior, O(y

2

),

and can be made exact with the right choice of L

�2

22

).

This remarkable behavior is obtained naturally, without

resorting to ad hoc functions of the wall normal vector or

wall normal coordinate. It is due to the fact that the in-

homogeneous terms have been explicitly extracted by the

model and do not involve any model parameters. These

asymptotics will hold as long as the length scale tensor

is non-singular.

The model given by equation (4) also satis�es a few

basic mathematical constraints. These can best be seen

by taking the trace of the model. Since the second term is

solely a redistribution term it vanishes, and the following

equation is obtained,
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If the length scale is a positive de�nite tensor, its trace

will be positive, and equation (5) then implies that the

dissipation will always be positive. In addition, equation

(5) can be used in combination with the trace of the

di�usion term to prove a mild form of the realizability

constraint. That is, the trace of the viscous terms go to

zero as the kinetic energy goes to zero. Therefore, the

model can not produce negative kinetic energy.

Despite the many attractive mathematical, physical

and numerical properties of this model its capabilities

are limited. The modeled dissipation tensor can not be

shown to be positive de�nite or to satisfy strict realizabil-

ity. As a result, equation (4) is probably only su�cient

for simple 
ows or simple models (such as k-�). In the

next section it is shown that these problems may be over-

come by a better choice of the renormalization tensor.

IMPROVED DISSIPATION MODEL

The procedure used for the basic dissipation model

can be generalized. Instead of using Q

ij

= q�

ij

(i.e. the

square root of the trace of R

ij

), the square root of the

entire Reynolds stress tensor is used, Q

ik

Q

jk

= R

ij

. This

decomposition is unique because R

ij

is a positive de�nite

tensor. With this de�nition of Q

ij

it can be shown that
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and the dissipation equation becomes,
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Note that the third term of equation (3) vanishes, but

the fourth term involving the unknown tensor W

mnk

re-

mains.

The third term of equation (6), the redistribution

term, is particularly interesting. It is zero if the Reynolds

stress tensor is either isotropic or homogeneous. In fact it

is zero if Q

im;k

= �Q

im

where � is a scaler quantity. This

turns out to be the case in spatially decaying turbulence

if there is no return to isotropy in the sense of Lumley

(1978). So in some sense this term can be thought of as

a return to isotropy term.

Further insight can be gained by assuming that the

Reynolds stresses are evaluated in their principal coordi-

nates. Then Q

ij

is a diagonal tensor with Q

��

= R

1=2

��

(here, and throughout the text, no summation is implied

for greek indices). In this arrangement the �rst term

of equation (6) only contributes to the diagonal compo-

nents of the dissipation tensor, and the redistribution

term only contributes to the o�-diagonal components of

the dissipation tensor. So along with the o�-diagonal

components of the length scale tensor, the redistribution

term is responsible for the fact that the dissipation ten-

sor does not have the same principal coordinates as the

Reynolds stress tensor. This is a useful property of the

model but one which is also burdensome since the tensor

W

mnk

introduces nine new unknowns for which no model

(even quasi-homogeneous) now exists.



The term involving W

mnk

can be eliminated by as-

suming that the dissipation tensor and Reynolds stress

tensors have the same principal directions, (an assump-

tion that was hypothesised to be true at low Reynolds

numbers by Rotta (1951), and which has some numer-

ical support in the work of Mansour, et. al. (1988)).

This assumption also necessitates that the length scale

tensor has the same principal directions as the Reynolds

stress tensor. Under these circumstances the model can

be written in the principal coordinates as,
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It can be shown that for every component of this

model, the leading (and sometimes higher order) coef-

�cients of an asymptotic expansion about a no-slip wall

are exact. This non-trivial result holds irrespective of

the model for the length scale, as long as the length scale

approaches a constant near the wall. It is a result of

the fact that inhomogeneity dominates in the near wall

region, and the inhomogeneous term of equation (7) is

exact.

This model also satis�es certain strict mathematical

constraints. By its construction the model is Galilean

and tensor invarient. It is clear from equation (7) that

if the length scale tensor is positive de�nite then the

dissipation tensor can also be guaranteed to be positive

de�nite, since each of its principal components must be

positive. To prove strict realizability (Shumann, 1977)

we again need to incorporate the di�usion tensor, D

ij

=

�R

ij;kk

. Then, in principal coordinates,
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Therefore, whenever a principal stress goes to zero, the

corresponding viscous component will also go to zero,

and the model will not cause the Reynolds stress tensor

to become inde�nite.

Numerically this model is not overly complicated. It

requires �nding the eigenvalues and eigenvectors of the

Reynolds stress tensor, constructing the dissipation ten-

sor in principal coordinates, and then using the eigen-

vectors to transform the dissipation back. The unknown

length scale tensor is easily modeled with standard quasi-

homogeneous dissipation models, as long as these models

are prevented from becoming singular. The performance

of the quasi-homogeneous model in strongly inhomoge-

neous regions is not particularly important since the ex-

act inhomogeneous terms of the model will tend to dom-

inate the solution in those regions.

RESULTS

The two models described above have been numeri-

cally tested against dissipation data from direct numer-

ical simulations (Perot, 1992). The 
ow in question is a

shear-free turbulent boundary layer, which is formed by

instantaneously placing a wall in isotropic homogeneous

turbulence. This temporally developing 
ow provides a

unique environment for testing near wall turbulence mod-

els, providing many of the aspects of a turbulent bound-

ary layer without the complications due to shear. It is

a 
ow which is well suited to testing these models be-

cause it provides large isotropy and inhomogeneity, but

the principal directions of the Reynolds stress tensor re-

main cartesian. In addition, in the 
ow far from the wall

an exact expression for the inverse time scale is known. In

the tests of the models this exact value will be used at all

points in the 
ow including the boundary layer (where it

is no longer exact, but is at least not singular). Since the

model equations are exact except for the determination

of the length scale tensor, these numerical comparisons

are principally a test of the quasi-homogeneous model,

and the constant inverse time scale hypothesis.

The basic dissipation model that was tested was;
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and the general dissipation model was;
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In both cases T
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Figure 1. shows a plot of the calculated (symbols) and

modeled (lines) dissipation tensor as a function of the

distance from the wall. Only the �

11

and �

22

components

are shown since all the o� diagonal components are zero

and �

33

= �

11

. This plot is at roughly one large eddy

turn-over time after the wall has been inserted, and the

microscale Reynolds number is approximately 15. It is

evident that the models give very good agreement near

the wall, and predict the asymptotic value at the wall

correctly. Globally, the error in the improved dissipation

model never exceeds 15%.
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Figure 1. The �

11

and �

22

components of the

dissipation tensor as a function of the distance from the

wall. � , �

11

calculated; | , �

11

from improved model;

� ��� , �

11

from basic model; , �

22

calculated; - - - , �

22

from the improved model; � � � , �

22

from the basic model;

(T

E

= 1, Re

�

= 15, L

E

=

q

3=2

�

)



The same curves are plotted in �gure 2. at almost

three large eddy turn-over times after the wall has been

inserted, and at a much higher microscale Reynolds num-

ber of about 65. The models continue to show very good

agreement with the simulation data under these condi-

tions. Further agreement could be achieved by a more

complicated expression for the length scale tensor which

took into account the changes in length scale as the wall

is approached. It is su�cient for the purposes of this pa-

per, however, to demonstrate that even the simplest of

length scale models can produce reasonable results.
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Figure 2. The �

11

and �

22

components of the

dissipation tensor as a function of the distance from the

wall. � , �

11

calculated; | , �

11

from improved model;

� ��� , �

11

from basic model; , �

22

calculated; - - - , �

22

from the improved model; � � � , �

22

from the basic model;

(T

E

= 3, Re

�

= 65, L

E

=

q

3=2

�

)

Note that in both cases the model tends to underpre-

dict �

22

and overpredict �

11

. This discrepancy can not be

�xed by a more complicated expression for the inverse

time scale, (which was assumed to be a constant). It

must be a result of the model for the length scale tensor,

which probably should include a return to isotropy term.

However, it is hardly worth resolving these small details

until equally accurate near wall models for the pressure

strain and turbulent transport terms of the Reynolds

stress equations are also developed.

SUMMARY

The dissipation model that has been presented sat-

is�es a host of mathematical and physical constraints.

These constraints were not prescribed a priori, or im-

posed with ad hoc modi�cations, their satisfaction is sim-

ply a consequence of the rigorous way in which the model

was developed. The fundamental idea underlying this

model is that the length scales associated with the inho-

mogeneity and the length scales associated with the dissi-

pative 
uctuations are vastly di�erent and can therefore

be separated. This is the basis for the decomposition

u

i

= Q

ik

~u

k

.

The model assumes only that a reasonable expres-

sion for the quasi-homogeneous renormalized dissipation

exists, and that the dissipation and Reynolds stress ten-

sors have the same principal directions (a restriction that

could be removed). In addition, a simple form of the

model suitable for k � � type modeling exists (eqn. (5)).

Finally, the non-linearity and simplicity of this model-

ing approach makes it attractive both numerically and

aesthetically.
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