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Abstract

Processes in disperse multiphase systems are significantly determined by the in-

teraction of momentum and mass transfer at the interface including particle defor-

mation. A code for modeling such interactions for a single drop has been improved

with special stress on implementation of interfacial tension. The influence of the

surface tension on the momentum transfer is a function of the curvature. A new

method to determine the curvature along the discretized interface is introduced and

compared with two methods known from literature. The code operation could be

stabilized and it could be shown, that an approach based on a spherical assumption

for the interfacial shape gives significantly better results than an approach based

on a polynomial assumption.
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Notation

Af area of cell face, m2

~e unit vector in cell face perpendicular to edge, m

~Fσ force caused by interfacial tension, N

~g gravitational acceleration, m/s2

H curvature, 1/m

I unit matrix, –

Le edge length, m

~m vector tangential to interface and perpendicular to edge, m

~n face normal vector, m

p pressure, Pa

R radius of the droplet, m

~r vector from cell circumcenter to face circumcenter, m

~rcg vector from cell center of gravity to face center of gravity, m

t time, s

~te vector along edge, magnitude equal edge length, m

~v velocity, m/s

Greek symbols

κ correction factor in eq. (12), –

µ dynamic viscosity, kg/ms

ν kinematic viscosity, m2/s

ρ density, kg/m3

σ interfacial tension, N/m

τ stress tensor, Pa

Indices

2



1 dispersed phase

2 continuous phase

c cell

e edge

f cell face (part of interface)

i interface

n normal

t tangential

1 Introduction

Two-phase systems with two fluid phases have a wide range of application in

chemical engineering. Extraction processes, bubble columns and airlift loops

are only some examples. For design and optimization of such apparatuses

knowledge of the processes at the interface is indispensable. To study the

interaction of momentum and mass transfer including particle deformation

numerically is an important step to gain such knowledge.

The code uns3d is designed to simulate the flow of a two-phase system us-

ing an adaptive mesh technique. The model equations are solved continuously

through both phases but with different physical parameters. Therefore, at the

interface no boundary condition is required but the jump conditions have to

be included in the discretized form of the governing equations at the right

location.

The discretization is based on the unstructured mesh method with exact pres-

sure projection. A detailed description can be found in [1], [2], [3].
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2 Model

The governing equations for the flow field are the equations of continuity and

momentum balance. As both phases are considered to be incompressible and

of constant viscosity the Navier Stokes equations can be applied:

0 = ∇ · ~v (1)

ρ
∂~v

∂t
= −ρ~v · ∇~v + ∇ · (µ∇~v) −∇p + ρ~g (2)

Usual boundary conditions for walls, inlet, outlet, symmetry etc. can be ap-

plied at the outer boundaries. At the interface, a discontinuous change in the

fluid properties and jump conditions determine the behavior of the flow.

For the systems considered, the two velocity fields are coupled by a non-slip

condition:

~v1 = ~vi = ~v2 (3)

This equation also determines the velocity of the interface motion ~vi. For the

moving mesh technique this velocity determines the velocity of the nodes at

the interface which is the basis for the mesh adaptation.

The jump in the velocity gradients at the interface is related to differences in

kinematic viscosity in both phases, the pressure jump over the interface and

the force caused by interfacial tension. This can be formulated in equations

for the shear stress [4]:
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τnn,1 − p1 = τnn,2 − p2 + 2Hσ

~τnt,1 = ~τnt,2 + ~t · ∇Sσ

(4)

where the gradient along the interface is

∇S = (I− ~n~n) · ∇ (5)

and the curvature H is defined by

H = −1

2
∇S · ~n (6)

and can be expressed as a function of two curvature radii RC1 and RC2

H = − 1

RC

H = −1

2

(
1

RC1

+
1

RC2

)
(7)

The second approach which is often used assumes that the interface can locally

be approximated by an elliptic shape.

3 Implementation

In the moving mesh approach the two fluids are distinguished only by their

physical parameters. The Navier Stokes equations are solved for the whole

domain and not separately for the phases. Therefore, the jump conditions can

not be used as boundary conditions as in [5],[6] but have to be integrated into

the discretized Navier Stokes equations at the interface. The consideration of

the non-slip condition does not require additional action as the continuity of
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the velocity field is a basic assumption for the discretization also within the

phases.

The jump in the velocity gradients can be implemented straightforward, be-

cause the discretization procedure applied requires the expression of the fluxes

at each cell face. If a cell face is considered which is a part of the interface (see

Fig. 1) the computation of the fluxes must be based on the jump condition.

Discretization of (4) gives:

normal

µ1

r1

(vnc1 − vnf ) − pc1 =
µ2

r2

(vnf − vnc2) − pc2 + 2Hσ (8)

tangential

µ1

r1

(~vtc1 − ~vtf ) =
µ2

r2

(~vtf − ~vtc2) + ~t · ∇Sσ (9)

where the velocity gradients are discretized between the cell centers and the

center of the face in the interface while the pressure difference is determined

between the two cells. Combining the continuous (4) and discretized (8) for-

mulation different expression for the momentum flux across the interface are

gained for both phases:

µ1

(
∂~v

∂n

∣∣∣∣∣
f1

)
=

~vc2 − ~vc1

α1

+
pc2 − pc1 + 2Hσ + ~t · ∇Sσ

α1

with α1 = 1 +
µ2r1

µ1r2

µ2

(
∂~v

∂n

∣∣∣∣∣
f2

)
=

~vc2 − ~vc1

α2

− pc2 − pc1 + 2Hσ + ~t · ∇Sσ

α2

with α2 = 1 +
µ1r2

µ2r1

(10)

The weighting factor for the velocity term is identical to the weighted har-

monic mean approach for the viscosity published by Quan and Schmidt [7].

The influence of interfacial tension is not only implemented for the liquid cells
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as in former versions but distributed. The normal part is implemented directly

at the interface while the tangential part is split between the neighbor cells

in both phases based on the viscosity ratio and the rato of cell sizes. This is

especially significant for cases with a viscosity ratio close to one. For large

differences in viscosities the former version is gained as limiting case.

It can be shown that in the discrete equations the normal velocity component

in both cells is equal. This means, that the normal component of the inter-

face tension stress and the pressure gradient cancel out and can be therefore

removed from the equation. This is consistent with the code structure in the

sense, that the transformation of discretized equations with primitive vari-

ables into equations for the stream function avoids a solution for the pressure.

The remaining tangential component is relevant for the simulation of variable

interfacial tension like in cases with changing temperature or concentrations

at the interface.

In the total stress balance at the interface the normal interfacial tension stress

is considered. The interfacial tension terms in eq. (4) can be expressed in the

discretized form to be forces acting at the cell faces which are part of the

interface. They can be either computed from the curvature at the midpoint of

the face or from the forces acting at the edges. In this paper one procedure is

investigated which computes the curvature based on a polynomial fit and two

procedures which compute forces at the edges based on a spherical assumption

for the local shape of the interface. Both approaches are of second order.The

first approach has been implemented by Dai [2]. It fits the polynomial either

to six or to twelve nodes. In the way it is implemented the forces are not

guaranteed to be in local equilibrium.

The second approach computes the force at the faces based on the forces act-

ing on the edges in a direction normal to the edge and normal to the curvature
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radius direction. For a two-dimensional system this is shown in Fig. 2. They

are proportional to the length of the edge and the interfacial tension at the

edge. This determination is relevant in cases where the interfacial tension is

not constant. The discretized force can be written as:

~Fσ,f =
∑
e

~Fσ,e =
∑
e

κ~me

|~me|
Leσ (11)

where ~me is the binormal vector at edge e. The correction factor κ is defined

in a way that
∑

e(κ~me/|~me|)Le = 2H.

A major difficulty is the determination of the binormal vector. The two pro-

cedures assuming spherical shape are presented here vary in the way the bi-

normal vector is computed. They differ mainly in the number of neighboring

faces considered. The method used by Jasak and Tukovič [8] computes in a

first step the normals at the interfacial mesh nodes from the normals of all

interfacial faces surrounding this nodes. Then, the binormal on an edge is

computed from average of the two nodal normals and the edge direction.

A new method shall be introduced here which considers the sphere defined by

the four nodes which are corners of the two interfacial faces adjacent to the

edge. The basic derivation is done for two dimensions as shown in Fig.3 where

the circle is defined by the edge connecting the two faces (reduced to a point)

and the two remaining nodes of the faces (reduced to lines). The direction of

the binormal vector at the edge is normal to the edge and tangential to the

circle. An non-scaled vector ~me satisfying this requirements can be computed

as any linear combination of the two vectors ~m1 and ~m2 which are binormal

to the edge and the radius at the edge midpoint themselves. One possibility

for such a linear combination is:
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~me =
|~r1|
|~r2|

~m2 −
|~r2|
|~r1|

~m1 = |~r2|
~r1

|~r1|
+ |~r1|

~r2

|~r2|
(12)

The vectors ~r point from the circumcenter of the face to the midpoint of the

edge. To avoid problems if the circumcenter of a face is at the edge or outside

the face the unit vectors ~e = ~r/|~r| pointing in that direction can be computed

in any way, e.g. based on the vector ~rcg pointing from the center of gravity of

the face to the edge center and the vector ~te along the edge:

~e =
~rcg − ((~te · ~rcg)~te)/(~te · ~te)
|~rcg − ((~te · ~rcg)~te)/(~te · ~te)|

(13)

If this vector is used the computation is only correct if for the |~ri| in eq. (12)

not the absolute value of ~ri but the length with the sign relative to ~ei is used:

~me = |~r2|~e1 + |~r1|~e2 (14)

As all information in the code is stored with respect to the centers of gravity

the circumcenters of the faces have to be computed to determine ~ri. (refer-

ence to paper/thesis from Blair?) The transformation of the three-dimensional

system requires a correction factor, because the midpoint of the edge is not

at the sphere. A correction is possible either by an iterative procedure or an

algebraic expression.

This method uses information of less faces than the method of Jasak and

Tukovič and therefore has less smoothing. This is favorable in the case of a

physically not perfectly spherical interface but more vulnerable for numerical

errors.

Finally, for both edge based methods the interfacial tension force is split into
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a normal and a tangential part. At the edges, the tangential part of the force

related to the face normal is usually much larger than the normal part but the

tangential parts cancel nearly out if they are summed over the faces. To reduce

the resulting numerical error the vectors at the edges are split and the normal

and tangential parts are added separately for each face. For ease of further use

the tangential part is kept as a force while for the normal part the stress is

computed. The complexity of the computation of the interfacial tension term

makes implicit handling difficult. Therefore, in the actual version of the code

the term is implemented fully explicit. This requires time steps small enough

to resolve the transport of capillary waves caused by the interfacial tension.

4 Results

The three procedures introduced will be compared for the case of a liquid drop

in a gas. A basic case for evaluation is a resting drop without gravity field. In

this situation the drop should maintain its shape and no significant velocities

should be computed. Numerical errors can cause discrepancies e.g. because

of imperfectness of the mesh but for the steady state these errors should be

damped. The second test case is the falling drop.

The geometry used is a drop with a diameter of 200 µm within a box of

800 µm edge length. The outer boundary conditions state zero velocity at the

beginning. During the simulations they are modified in a way that he domain

is moved with the velocity of the centroid of the drop to ensure that the drop

can not fall out of the domain without need of a very large domain.

To study the influence of the physical properties on the numerical stability

density and viscosity for a water drop in air have been applied. The interfacial
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tension had to be reduced by a factor of 100 to obtain numerically stable

results. The values are listed in table 1.

ρair µair ρH2O µH2O σ

1.2 kg/m3 1.82 · 10−5 Pa s 998 kg/m3 10−3 Pa s 0.0728 · 10−2 N/m

Table 1

Physical properties

For comparison with other systems Table 2 gives the determining dimension-

less numbers. As a reference velocity the final velocity of the simulation has

been used. This is not the stationary fall velocity which reduces the appli-

cability of the computed Reynolds and Weber number. For the resting drop

velocity dependent numbers can not be used.

Re We Oh µH2O/µair ρH2O/ρair

1 2 · 10−3 0.083 55 832

Table 2

Dimensionless numbers

The smoothing algorithms in the code tend to unify the mesh resolution.

Therefore, a mesh with a nearly uniform resolution has been generated which

contains about 2000 cells in the drop and 2200 cells in the surrounding. This

resolution provides stable results for a reasonable computing time. Accuracy

studies for variable mesh resolution have not been performed.

Because of partly explicit discretization the time step is restricted by the

Courant number and a similar criterion for capillary waves at the interface to

values between 10−7 s to 10−5 s. Therefore, the physical times simulated are

relatively short and the results should be understood as a feasibility test for

the method rather than a physically relevant simulation.
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The first test for judging the methods was done with the curvature computed

in the first time step. In this step the shape of the drop did not change yet,

so the theoretical curvature can be used for comparison. The error for the

polynomial method is about 5% for the 12 node approximation and 2% for

the 6 node approximation. In contrary, for the spherical method the error is

in the range of the machine accuracy. This result is not surprising, because an

approximation assuming the real shape should give much better results than

a one for a different shape, even if it has the same order of accuracy.

For the resting drop in a system without gravity the development of the veloc-

ity magnitude at the interface and averaged over the whole drop was checked

over 10,000 time steps which equals a physical time of about 0.03 s. After a

short initial instability with velocity magnitudes of about 10−9 m/s the system

stabilizes for the Tucovič method and the new one to velocity magnitudes of

about 10−13 m/s which can be considered to be a well acceptable error. Simu-

lations with the polynomial approach give velocities in the range of 10−4 m/s

which is significant considering the fact that only a very short real time is

simulated. At least, the shape of the drop is stable in all simulations which

is a significant improvement gained by the way the surface tension terms are

implemented.

Simulations of the falling drop have been carried out for 12,000 time steps

equal to a physical time of about 0.008 s. Over this time the drop accelerates

due to gravity, a constant sink velocity is not reached yet. To validate the sim-

ulations for such a short time, where no reliable measurements are available, a

simulation with the commercial CFD-code Star-CD and with the solution of

an ordinary differential equation for the sink velocity of a rigid sphere [9] have

been used. Both assume an undeformed spherical particle which is completely

acceptable for the configuration studied. The implementation in Star-CD has
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been validated for falling and rising drops in different liquid/liquid systems

[6]. The assumption of a rigid sphere in the analytical equation is for a small

water drop in air nearly satisfied. Fig. 4 shows, that all three curves fall nearly

together. At the end, where slight differences can be seen, the simulation with

uns3d (newly introduced computation of curvature used) is between the other

two other solutions and can therefore be considered to be satisfying.

The acceleration requires a permanent reduction of the time step to fulfill the

Courant-Friedrichs-Lewy criterion. Therefore, even if the drop has not reached

its terminal velocity during the simulations a continuation of the computation

for a physically reasonable time is not possible at the moment.

4.1 Conclusion

The implementation of the interfacial tension terms into a finite volume code

with moving adaptive mesh has been improved. The implementation is now

done in a way that physical stability can be reflected by the simulations and

that variable surface tensions, which cause a significant tangential force along

the interface can be considered. This provides a basis for simulations sensi-

tive to local changes in the interfacial tension, like in systems with Marangoni

convection.

Simulations have been validated for a falling water drop in air and coincide

with simulations using the commercial code Star-CD as well as an analytical

limiting equation.

The curvature of the interface can be described by an polynomial or a spher-

ical approximation. For the drop the spherical approach gives much better

results and a higher stability of the solution because it is an exact fit. As the
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spherical shape is the stable one for liquid particles under surface tension on

which do not act other forces while the polynomial shape is quite arbritrary

the spherical approach can be advised in general for such kind of simulations.

The partly explicit discretization used in the code requires quite small time

steps. Therefore, physically relevant times which allow a comparison of simu-

lation results with experiments e.g. for the sink velocity can not be gained at

the moment.
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Fig. 1. Geometry of cells at the interface
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Fig. 2. Forces at edges and averaging (2d)
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Fig. 4. Comparison of simulated particle velocity with other validated approaches

19


