
Shear-free turbulent boundary layers, Part I:Physical insights into near wall turbulenceBy BLAIR PEROT yAND PARVIZ MOIN yyDepartment of Mechanical Engineering. Stanford University. Stanford, CA 94305 USADirect numerical simulation is used to examine the interaction of turbulence with a wallin the absence of mean shear. The inuence of a solid wall on turbulence is analyzedby �rst considering two `simpler' types of boundaries. The �rst boundary is an idealizedpermeable wall. This boundary isolates and elucidates the viscous e�ects created by thewall. The second boundary is an idealized free surface. This boundary complementsthe �rst by allowing one to isolate and investigate the kinematic e�ects that occur nearboundaries. The knowledge gained from these two simpler ows is then used to understandhow turbulence is inuenced by solid walls where both viscous and kinematic e�ects occurin combination.Examination of the instantaneous ow �elds con�rms the presence of previously hy-pothesized structures (splats), and reveals an additional class of structures (antisplats).Statistical analysis of the Reynolds stresses and Reynolds stress transport equations indi-cates the relative importance of dissipation, intercomponent energy transfer, and energytransport. It is found that it is not the structures themselves, but the imbalance betweenstructures which leads to intercomponent energy transfer. Remarkably, this imbalance(and hence near wall intercomponent energy transfer), is controlled by viscous processessuch as dissipation and di�usion. The analysis presented herein is a departure from pastnotions of how boundaries inuence turbulence. The e�cacy of these qualitative physi-cal concepts is demonstrated in Part II where improved near-wall turbulence models arederived based on these ideas.1. IntroductionWalls a�ect turbulence through a number of di�erent mechanisms. The most prominentand well understood mechanism is that due to mean shear. But other, more subtle mecha-nisms also exist and can be isolated through the study of shear-free boundary layers wherethe inuence of mean shear has been eliminated.Understanding the interaction of turbulence with a solid wall is of fundamental impor-tance to basic turbulence research. Many situations which are particularly di�cult toy currently at Los Alamos National Laboratory.yy also with NASA-Ames Research Center.



2model (stagnation points, separation, reattachment) intimately involve the inuence of aboundary on turbulence. Understanding how a solid wall interacts with turbulence is thekey to improving the predictive capabilities of near wall models, and is the motivation forthis work.A great deal is understood about how mean shear inuences near wall turbulence.Kline, Reynolds, Schraub, & Runstadler (1967) and later (Moin, 1987; Robinson, 1989)showed that turbulence production is intimately associated with the streamwise vorticesand streaky structures that are found in the near wall region . It has also been demon-strated by Lee, Kim & Moin (1987) that streaky structures are a direct result of largemean shear.However, many boundary layers have regions where mean shear is not the dominantmechanism; examples are high free-stream turbulent boundary layers, free-surface ows,and in many circumstances separating and reattaching ows. In these regions the wall(or surface) continues to have a very profound e�ect on the turbulence behavior but theprocesses which are at work are not as well understood as in the shearing case. This isreected by the fact that many turbulence models have di�culty accurately predictingthese ows. Shear-free turbulent boundary layers provide a means of isolating some of themore subtle interactions that occur between turbulence and a solid wall and should helpto elucidate the physics that is currently missing from most near wall turbulence models.1.1 BackgroundThe �rst experiments on shear-free boundary layers were performed by Uzkan & Rey-nolds in 1967. In these experiments a shear-free boundary layer was created by passing gridgenerated water tunnel turbulence over a belt that moved at the mean velocity of the uid.In this arrangement the turbulence far from the belt decayed as it moved downstream.Closer to the wall, the turbulence decayed at a faster rate due to the presence of the wall.Uzkan & Reynolds measured the streamwise turbulent intensities at a number of stationsalong the belt. They quanti�ed the turbulence `damping' produced by the belt and showedthat the damping region scaled on a viscous length scale.In 1977, Thomas & Hancock performed a very similar moving belt experiment in air.Their measurements were more detailed and included all the turbulent intensities. Remark-ably, they obtained substantially di�erent results from their predecessors. The streamwiseturbulent intensity increased as one approached the wall rather than being damped. Ina primarily theoretical paper Hunt & Graham (1978) attempted to reconcile these di�er-ences. They suggested that the di�erent behaviors were a result of a competition betweentwo di�erent mechanisms, one viscous and therefore dynamic, the other essentially kine-matic. In the experiments of Uzkan & Reynolds the viscous e�ects dominated becausethe Reynolds number was relatively low (ReT = k2=�� � 90). On the other hand theexperiments of Thomas & Hancock, at ReT � 2000, allowed the kinematic e�ects (oftenreferred to as wall blocking e�ects), to control the near wall behavior.Biringen & Reynolds (1981) attempted to numerically simulate these shear-free turbulentboundary layers. They used large eddy simulation, and so their results were limited bygrid resolution and the sub-grid scale models available at the time. Their simulations didshow, very generally, the right Reynolds number trends, but it is not clear whether thisis a result of higher Reynolds numbers or a result of using a no-stress boundary condition



3(rather than no-slip) for the higher Reynolds number simulation.The present work uses direct numerical simulation to study several di�erent types ofshear-free boundaries at various Reynolds numbers. Detailed instantaneous and statisticalmeasurements of the ow have been calculated, including terms in the Reynolds stressevolution equations. For an analysis of heat transfer in shear-free turbulent boundarylayers see the related work of Malan & Johnston (1993). Experimental studies involvingmild mean shear, and heat transfer, are currently underway by Bradshaw & Bott (1993).Simulations of boundary layers with mild shear, and additional statistical results from thiswork can be found in Perot & Moin (1993).1.2 Review of Near Wall PhysicsThe experiments of Uzkan & Reynolds and Thomas & Hancock revealed that the e�ectsof a solid wall on turbulence, even in the absence of mean shear, are quite complicated.Viscous e�ects damp the turbulence intensities, while wall blocking e�ects can amplifytangential turbulent intensities. An event (or structure) called a \splat" is used to explainhow tangential turbulent intensities can increase near a wall (such as was the case in theThomas & Hancock experiments). A splat is a local region of stagnation point ow resultingfrom uid impinging on the boundary. Because uid can not penetrate the boundary (wallblocking), any uid moving towards a wall must eventually turn and move parallel to thewall. In this way, a splat event transfers energy from the normal velocity component tothe two tangential velocity components, increasing the tangential turbulence intensity nearthe wall.In homogeneous ows, energy transfer of this type (between various velocity compo-nents) is typically associated with the pressure-strain term of the Reynolds stress trans-port equations. In inhomogeneous ows, other terms (such as the dissipation) could alsopotentially contribute to the redistribution of energy among the various velocity compo-nents. However, the pressure-strain term is still considered to be principally responsible forintercomponent energy transfer in these shear-free ows. This is because splat events (re-sponsible for intercomponent energy transfer) have a region of high pressure, and stronglydecelerating ow associated with them, and these are exactly the elements required toexhibit a strong pressure-strain correlation.The intercomponent energy transfer mechanisms that occur near boundaries are fun-damentally di�erent from those that occur in homogeneous turbulence. This is reectedvery clearly in the pressure-strain term. In homogeneous turbulence, the pressure-strainterm tends to isotropize turbulence. Near walls (even shearing walls) pressure-strain tendsto move turbulence away from isotropy. A deeper understanding of shear-free boundarylayers, and in particular splats, could be the key to better pressure-strain modeling, andimproved near-wall turbulence models.It is the goal of this paper to analyze, in detail, the hypotheses and assumptions embed-ded in the paragraphs above. These hypothesis are often the basis for turbulence models(see Durbin (1993) and Brumley (1984) for examples). We will �nd that although theprevious analyses are very useful, they require considerable alterations and adjustments toexplain the results of our simulations.



4 1.3 OverviewThe numerical details and the computational con�guration used to simulate the dif-ferent shear-free boundary layers are presented in section 2. Results from simulations ofturbulence near a perfectly permeable wall are presented and discussed in section 3. Thecomplementary boundary, an ideal free surface, is analyzed in section 4. As opposed to thepermeable wall, this ow is dominated by wall blocking and has only mild viscous e�ects.Only, when these simpler boundaries are fully understood, do we propose to analyze howa standard solid wall inuences turbulence (section 5). Finally, section 6 presents a shortdiscussion and a summary of the major conclusion of this work. Appendix A contains anoverview of the inviscid RDT (Hunt & Graham) analysis and a discussion of its range ofapplicability, and appendix B discusses the viscous near wall Hunt & Graham analysis.Part II of this series goes on to extend the qualitative ideas developed in this paper intoquantitative improvements in near wall turbulence modeling.2. Simulation Details 2.1 Numerical DiscretizationThe results presented in this study are based on direct numerical simulations of theunsteady, incompressible, constant property Navier-Stokes equations,r � u = 0 (2:1a)@u@t + (u � r)u = �rp+ 1Rer2u: (2:1b)All essential scales of motion are computationally resolved; no modeling of the small scaleturbulence is needed.A second-order, �nite volume method, on a cartesian staggered mesh is used to discretizethe equations of motion. The discretization is very much in the spirit of Harlow & Welch(1965) and Kim & Moin (1985). Lilly (1965) showed that in the absence of viscosity,this scheme conserves energy, momentum, and vorticity. Details of the discretization aregiven in Le (1994). The performance of the method, on the Connection Machine and theCray Y-MP is discussed in Perot (1992).The computational box size of the simulations is large enough so that the ow variablesare not correlated across the computational box. This was ensured by examining twopoint velocity correlations. In agreement with other direct numerical simulations, a boxsize equal to about �ve times the wavelength of the peak energy containing wavenumberwas found to be su�cient. The grid resolution, on the other hand, is a function of theReynolds number. In the simulations that we will be discussing various grid sizes wereused, depending on the Reynolds number. In all cases, the grid resolution used in thesesimulations is in close agreement with other well resolved simulations and the predictionsof Reynolds (1991).The nonlinear convective terms are advanced in time with a third order Runge-Kuttamethod. The stability limit imposed by the explicit Runga-Kutta method is not overlyrestrictive and corresponds roughly to the condition that the temporal accuracy matchesthe spatial accuracy (in a Taylor's hypothesis sense). The di�usive terms are advanced



5implicitly with the trapezoidal (Crank-Nicolson) method, to avoid stability restrictions.Finally, the pressure is updated using the fractional step method. This time advancementscheme di�ers from that of Kim & Moin (1985) in only a few ways. First, the di�usiveterms are updated only once, not at every substep of the Runge-Kutta advancement. Thisallows the Runge-Kutta scheme to be simpler and have a CFL stability limit of 2 ratherthan p3. This type of operator splitting was studied by Maday et al. (1990), and wasshown to be mathematically and computationally sound. Second, an improved fractionalstep method was implemented which overcomes previously problematic boundary conditionand time accuracy issues. This improvement is accomplished by performing the spatialdiscretization before the operator splitting, rather than after (Perot 1993).2.2 Con�gurationIt was mentioned in both the papers of Uzkan & Reynolds and Thomas & Hancock thatthe ideal shear-free turbulent boundary layer is created by instantaneously inserting anin�nite at plate into homogeneous isotropic turbulence. This creates a boundary layerwhere statistical properties depend only on time and the distance from the wall. Thistemporally growing shear-free boundary layer is statistically homogeneous in planes par-allel to the wall. The mechanical di�culties associated with instantaneously inserting aat plate into turbulence led to the use of the moving belt con�guration for the experi-mental studies of Uzkan & Reynolds, and Thomas & Hancock. The current con�guration(temporally developing) is related to the experimental studies (spatially developing) viaTaylor's hypothesis. The temporally growing layer is somewhat \cleaner" since there areno streamwise derivatives. These streamwise derivatives are particularly inuential at theleading edge of the spatially growing layer, and their e�ects can be felt for long distancesdownstream because (unlike standard boundary layers) there is no production or meanow present which can quickly reorganize the turbulence.An example of the con�guration is shown in �gure 1. The simulation starts with alarge (periodic) box of turbulence. Then at a particular time (arbitrarily labeled t = 0),boundaries are instantaneously introduced at the top and bottom faces of the computa-tional domain. As time progresses, boundary layers grow away from the boundaries. Theseboundary layers consist of large variations in the statistical properties of the uid. Theydo not have a mean ow associated with them, since the mean ow is zero everywhere inthese simulations. The simulation ends just before the top and bottom layers are closeenough to begin interacting with each other. Boundaries are placed at both the top andbottom faces of the domain in order to double the available statistical sample. Periodicboundary conditions are used for the other faces of the domain, and grid re�nement isused near the boundaries in order to adequately capture the developing layers there.2.3 Boundary InsertionThe instantaneous appearance of a boundary in a turbulent uid is a process that re-quires some attention, particularly when the boundary is impenetrable (v = 0 on theboundary). Sudden imposition of the v = 0 boundary condition on an initially incom-pressible velocity �eld would, in the absence of pressure, cause continuity to be violatedat the boundary. The pressure preserves continuity by responding to the v = 0 bound-ary condition, and instantaneously redistributing energy among the velocity components
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Figure 1. Schematic representation of computational con�guration used to simulatetemporally growing shear-free turbulent boundary layers.appropriately.Mathematically, this process is equivalent to projecting the dilatational velocity �eld(created by the instantaneous imposition of v = 0), into the space of incompressible velocity�elds. Numerically, this projection can be easily accomplished by drastically reducing thetime step of the simulation when the boundary is inserted. In both cases, the result is theHunt & Graham solution for high Reynolds number wall bounded ows.The Hunt & Graham RDT (Rapid Distortion Theory) analysis is exact for the caseof boundary insertion (see Appendix A). The analysis predicts that the sudden presenceof wall blocking (v = 0) will reduce the normal component of the turbulence intensityover roughly one large eddy length away from the boundary, and cause a correspondingampli�cation in the tangential turbulence intensities. This energy redistribution occursinstantaneously in order to preserve continuity when the boundary is inserted. This im-plies that for the free surface and solid wall boundaries, the turbulence is not homogeneousimmediately after boundary insertion (at t = 0+). The subsequent evolution of the tur-bulence will be inuenced by both the boundary and the initial inhomogeneity in theturbulence. This makes the results of these simulations somewhat harder to interpret, butdoes not fundamentally change any of the conclusions that are drawn from the results.2.4 Parameters & StatisticsThe relevant Reynolds number for these shear-free ows is the turbulent Reynolds num-ber, ReT = k2=��, where k is the turbulent kinetic energy, � is the turbulent dissipationrate, and � is the kinematic viscosity. This is a result of using k1=2 as the relevant velocity



7scale and the large eddy length, L = k3=2=�, as the relevant length scale. For homoge-neous isotropic turbulence, the turbulent Reynolds number is related to the more com-monly quoted longitudinal Taylor microscale Reynolds number by ReT = 320Re2�. HereRe� = u0�=� where u0 = pu02 and � is the longitudinal Taylor microscale (Batchelor,1956). As a basis for comparison in what follows, the experiments of Uzkan & Reynoldshad a turbulent Reynolds number of approximately 90, and the experiments of Thomas &Hancock had a turbulent Reynolds number of about 2000.Statistics of the turbulence were evaluated by averaging over the homogeneous x and zdirections, and additionally through the use of ensemble averaging. Each realization in theensemble is produced by running the simulation under the same ow parameters but witha di�erent initial condition. The statistics far from the boundary, in the far �eld region,typically take the longest time to converge since length scales are largest there. Due torestrictions on computational resources, and the large number of simulations (realizations)required for this study, some of the statistical results show oscillations in the far �eld dueto lack of statistical sample. We judged it a poor use of computational resources to smooththese oscillations further. The number of realizations that are required in each case, is afunction of the grid resolution, the Reynolds number of the turbulence, and the boundarybeing studied.In addition to determining the Reynolds stresses, all the terms in the Reynolds stressevolution equations,Rij;t = �(Qi;j +Qj;i) + 1ReRij;kk � Tijk;k � �ij +�ij (2:2)were evaluated. Rij = uiuj is the Reynolds stress tensor, Qi = pui is the pressure ve-locity correlation, Tijk = uiujuk is the triple correlation tensor, �ij = 2Reui;kuj;k is thehomogeneous dissipation rate tensor, and �nally �ij = p(ui;j + uj;i) is the pressure-strainterm. When the mean velocity is zero (as is the case in this work), then the pressure-strain term is equal to the slow pressure-strain (Rotta, 1951). Since the production term,Pij = �(Ui;kRjk + Uj;kRik) and the convective term UkRij;k are identically zero for theows under consideration, they does not appear in Eqn. (2.2).Results will only be presented for the tangential R11 and normal R22 components of theReynolds stress tensor. Since these ows are statistically axisymmetric, R33 = R11 and allo�-diagonal stresses are zero. 2.5 BoundariesThe perfectly permeable wall studied herein allows ow to move unimpeded throughthe boundary, but prohibits any motion tangential to the wall. Although unusual, thepermeable wall has some very interesting physical properties. Most importantly, it doesnot result in wall blocking. This allows the study of near wall viscous e�ects to occurin isolation from the complicating inuences of wall blocking. The numerical boundaryconditions for the perfectly permeable wall are zero tangential velocity (u = w = 0), anda periodic normal velocity (i.e. no direct condition on the normal velocity). However,@v=@y = 0 is implicitly satis�ed at the boundary because of the continuity equation.Simulations were performed for turbulent Reynolds numbers, ReT , of 6.2, 54, and 137.The two lower Reynolds number simulations used a grid size of 64 � 128 � 64, though



8the lowest Reynolds number case probably does not require such a �ne grid. The higherReynolds number case required a 128 � 256 � 128 grid. For converged statistics, 204realizations were taken for the lowest Reynolds number case, and 102 realizations forthe moderate Reynolds number case. Only 4 realizations were possible for the highestReynolds number case, which means that the statistics are only marginally converged.Only one result from the higher Reynolds number case is reported. The two lower Reynoldsnumber cases require roughly the same number of realizations to obtain the same degree ofstatistical convergence. The use of twice the number of realizations for the lowest Reynoldsnumber case, was done to get a rough idea of the e�ort required to obtain further smoothingof the statistical results.The free surface studied in this work is \ideal" in that it does not support surface waves.This corresponds physically to a very large surface tension. The behavior of turbulencenear a free surface has important practical implications for problems involving heat andmass transfer. Such problems are frequently of interest in chemical and environmentalengineering where surface processes are often critically important. The ideal free surfacemay also be a useful approximation to high Reynolds number wall bounded ows.In many respects, the physics of the free surface is complementary to that of the perfectlypermeable wall. It is dominated by wall blocking (v = 0), and presumably the splat e�ect,but has almost no viscous e�ects since there is no uid stress at the surface. The freesurface boundary allows an in-depth analysis of the (essentially kinematic) wall blockinge�ects of a wall, without the complicating inuence of viscous damping. Since much hasbeen hypothesised about splats and their inuence on near wall behavior, this boundaryprovides an ideal situation in which to test those hypotheses.Turbulence near a free surface was simulated at two di�erent Reynolds numbers. The�rst case has an initial Reynolds number of 54. It required a 64 � 128 � 64 grid and60 realizations. The second case has an initial turbulent Reynolds number of 134, andrequired a 128� 256� 128 grid, and 54 realizations for converged statistics.The solid wall boundary incorporates the blocking condition (v = 0) of the free surface,and the no-slip condition (u = w = 0) of the perfectly permeable wall. Accompanyingthe no-slip condition is the kinematic boundary condition mentioned above, @v=@y = 0.Not surprisingly, certain aspects of the solid wall strongly resemble either the perfectlypermeable membrane or the free surface.The solid wall simulations were performed at turbulent Reynolds numbers of 54, 134,and 374. The grid was doubled in each direction at each successive Reynolds number (recallthat the required number of grid points in DNS is N3 � 30Re9=4T ), The largest Reynoldsnumber case was simulated using a 256 � 512 � 256 grid. In order to obtain convergedstatistics, 30 realizations were used at the lowest Reynolds number, and 54 realizationsand 2 realizations respectively were used at the higher Reynolds numbers. The CPU timerequired by the highest Reynolds number simulation limits the number of realizationswhich may be obtained in a reasonable amount of time.Note that the highest Reynolds number case (ReT = 374 , Re� = 50) does not bringus up to the high Reynolds number experiments of Thomas and Hancock (ReT = 2000,Re� = 120). However these simulations are among the highest Reynolds numbers obtainedto date using direct numerical simulation, and the range of Reynolds numbers simulated



9does allow one to (cautiously) extrapolate to higher Reynolds numbers.3 Perfectly Permeable WallIn the perfectly permeable wall simulations, it is found that the tangential Reynoldsstress, R11, rapidly collapses to a single pro�le when the tangential stress is normalizedby its free stream value R111 and the distance from the wall is normalized by the viscousscale, p�t. This collapse happens in less than an eddy turnover time, T0. Pro�les of thetangential Reynolds stress are shown in �gure 2. for various Reynolds numbers.
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Figure 3. Terms in the budget of the tangential Reynolds stress for turbulence neara perfectly permeable wall. (t=T0 = 3:0) (a) ReT = 6:2. (b) ReT = 54; � , timederivative; , pressure-strain; , pressure transport; � , turbulent transport;, viscous di�usion; , dissipation; j , sum of all terms.�gure 3, where terms in the budget of the tangential Reynolds stress are shown at twodi�erent Reynolds numbers. The terms are non-dimensionalized by the initial dissipationrate, �0. The pro�les are plotted at time t=T0 = 3:0. As expected, dissipation and di�u-sion dominate the balance near the wall. However, even at these low Reynolds numbers,turbulent transport also is an important factor in the near wall balance. The relativeimportance of turbulent transport also appears to increase signi�cantly as the Reynoldsnumber is increased. It is this term which is responsible for the change in shape of thetangential Reynolds stress with increasing Reynolds number.The turbulent transport term is shown in �gure 4. Three di�erent times, and twodi�erent Reynolds numbers are shown. Like the tangential Reynolds stress, the turbulenttransport term collapses very rapidly when scaled on the viscous length scale. The strongReynolds number dependence of this term is also very apparent. The fact that the turbulenttransport term and the tangential Reynolds stress both collapse on the same length scaleparameter, strongly suggests that the turbulent transport term can be modeled in termsof the tangential Reynolds stress. Since the turbulent transport term tends to make the
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12
(a)R 22=R
221

y=L10 2 4 6 8
0.6

0.8

1.0

1.2

t/To = 0.1
t/To = 1.1
t/To = 2.1
t/To = 3.1 (b)R 22=R

221
y=L10 1 2 3

0.6

0.8

1.0

1.2

t/To = 0.1
t/To = 1.1
t/To = 2.1
t/To = 3.1Figure 5. Scaled normal Reynolds stress pro�les near a perfectly permeable wall.(a) ReT = 6:2. (b) ReT = 54. , t=T0 = 0:1; , t=T0 = 1:1; , t=T0 = 2:1;, t=T0 = 3:1.Figure 6 helps to illuminate the underlying mechanisms of the inhomogeneity layerby showing the terms in the normal Reynolds stress budget at two di�erent Reynoldsnumbers. The pro�les are shown at time t=T0 = 3:0 well after the layer has developed.The turbulent transport and pressure transport terms for the higher Reynolds numbercase may not be statistically converged far from the wall. The transport terms involvederivatives of statistics, and so they amplify small variations in the measured statistics.The pressure strain term makes a signi�cant contribution to the normal stress evolutionequation. Note that the pressure-stain is a sink term for the normal stress equation and asource term for the tangential stress equation, reecting the fact that this term transfersenergy from the normal to the tangential stress components. Also note that the scale on�gure 6 is an order of magnitude smaller than that of the corresponding tangential stressbudget (�gure 3).The magnitudes of the transport terms (pressure transport and turbulent transport)increase signi�cantly as the Reynolds number increases. This is probably due to the largergradients that are present in the inhomogeneity layer at higher Reynolds numbers. Notethat the turbulent transport term near the boundary has a di�erent sign for the twodi�erent Reynolds number cases. This is not a function of the Reynolds number, but ofthe viscous time scale, (which is di�erent for the two instances presented). The viscousterms (dissipation and di�usion) do not play a major role in the behavior of the normalstress. The dissipation, although large, does not change signi�cantly from its free-streamvalue, as the wall is approached. It is also interesting that (at these long times) the timederivative changes very little across the domain. This indicates that the inhomogeneitylayer has approached some sort of equilibrium state.
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Figure 10. Terms in the tangential Reynolds stress budget for turbulence near an idealfree surface. (t=T0 = 3:0), (a) ReT = 54. (b) ReT = 134. See Figure 3 for legend.the near wall physics. Splats do indeed exist and transfer energy from the normal compo-nent of the velocity to the tangential component. However, antisplats quickly transformthat tangential velocity back into a normal velocity, so the net result is very little energytransfer, and hence a small pressure-stain term. This is an important point, which wewill return to often. Neither splats, nor antisplats are individually responsible for inter-component energy transfer in the near wall region. It is the imbalance between these twoevents which results in intercomponent energy transfer. Even more importantly, we willdemonstrate in the next section that this imbalance between events is controlled by viscos-ity. Viscous e�ects are relatively small near a free surface, and therefore there is relativelylittle energy transfer.Assuming that the previous explanation is valid, we then need to explain why the peakin the tangential Reynolds stress increases as time progresses. This increasing peak inthe tangential stress has long been attributed to energy transfer and the splat event. Theargument has been that since there is no turbulence production in this ow, any increasein the energy of one velocity component, must be at the expense of the other turbulencecomponent, and therefore the increase in the tangential stress near the wall must be a resultof energy transfer from the normal component, with splats being the logical explanation
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Figure 11. (a) Scaled turbulent kinetic energy. (b) Scaled dissipation. (ReT = 54), t=T0 = 0:1; , t=T0 = 1:1; , t=T0 = 2:1.for this transfer.Although the previous argument is very convincing, we suggest another scenario. Theincrease in the tangential turbulent intensity with time is due to the normalization ofthe tangential intensity by its free stream value. Essentially we are suggesting that theturbulence far from the wall decays faster than the turbulence near the wall, and thephenomena has nothing to do with energy transfer. To demonstrate this point, �gure11a shows the turbulent kinetic energy near a free surface. The turbulent kinetic energyshows a very similar behavior to the tangential Reynolds stress. It has a peak near theboundary, which increases with time. There is no energy transfer in the turbulent kineticenergy equation. Figure 11b con�rms our suspicion that dissipation (not energy transfer)is responsible for this phenomena. The �gure shows that the dissipation does indeeddecrease signi�cantly near the surface. It is our conjecture that the two componentalityof the turbulence near the surface (and therefore the lack of the usual energy cascade) isresponsible for this change in the dissipation rate near the surface.The normal Reynolds stress near a free surface is shown in �gure 12, for two Reynoldsnumbers and several di�erent times. When the distance from the wall is normalized bythe large eddy length scale the curves quickly collapse to a single pro�le. The pro�lesat the earliest time (solid lines) are equivalent to the inviscid RDT analysis of Hunt &Graham. The later time pro�les are in reasonable agreement with the RDT analysis, butthe agreement appears to deteriorate somewhat as the Reynolds number increases.The fact that the Hunt & Graham analysis applies to the boundary insertion problemand not to the subsequent evolution of turbulence near a boundary was recognized in apaper by Hunt (1984a). It has been suggested by Hunt (private communication) that thetheory may still be applicable at long times, because the time scales on which smallereddies \see" the boundary are relatively fast (since small eddies are swept towards theboundary by larger eddies). So in the frame of reference of the small eddies, the boundaryappears very suddenly, and the presence of the boundary is felt almost instantaneously. InHunt (1984b) it was suggested that the theory is still valid, as long as the dissipation does
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Figure 13. Terms in the normal Reynolds stress budget for turbulence near an idealfree surface. (t=T0 = 3:0), (a) ReT = 54. (b) ReT = 134. See Figure 3. for legend.tangential velocity (which was much stronger for the case of the permeable wall) whichultimately leads to energy transfer. Although subtle, this point of view is a considerabledeparture from past notions of how boundaries inuence turbulence.5 Solid WallThe presence of splats near a free surface was con�rmed in section 4. Whether thesesplats continue to be present near a solid wall, and whether they are a�ected by thestrong viscous e�ects near the wall, are addressed in this next series of simulations (shear-free turbulence near a solid wall). Instantaneous visualizations (similar to �gure 8) arequalitatively identical to the free surface results presented in �gure 8 (when the same initialcondition and Reynolds number are used). This suggests that splats (and antisplats) existnear the solid wall, even at relatively low Reynolds numbers (ReT = 54), and that thestructures near a shear free wall do not change appreciably due to the e�ects of viscosity.However, there are very signi�cant di�erences between the two ows which can not beidenti�ed by visual inspection. These di�erences are the result of viscosity. Althoughviscosity does not alter the basic form of near wall structures (as implied in previous
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Figure 14. Pressure-strain term near a free surface and pressure-strain term near apermeable wall. (t=T0 = 2:1 , ReT = 54), � , permeable wall; , free surface.notions of the near wall physics), it does alter the balance between splats and antisplats.The small imbalance between splats and antisplats in the solid wall case leads to signi�cantenergy transfer.The tangential Reynolds stress at ReT = 54 is shown in �gure 15a. The peak near thewall at early times is a residual e�ect of the inhomogeneous initial condition at the timeof wall insertion (see Appendix A). This initial peak in the tangential Reynolds stress isquickly dissipated by the viscous damping near the wall, and as in the permeable wallcase, the pro�les soon collapse to a single pro�le when scaled appropriately. Figures 15band 15c show similar plots at Reynolds numbers 134 and 374 respectively. The higherReynolds number case su�ers from poor statistical sample (only two realizations). We willfocus only on the very near wall results of the ReT = 374 simulation, (which appear to bestatistically converged).The Reynolds number dependence of the tangential Reynolds stress is summerized in�gure 15d. This �gure shows the Reynolds stress pro�les for four di�erent Reynolds num-bers numbers at time t=T0 = 3:1, (well after any residual e�ects due to the initial conditionhave subsided). The curve labeled ReT = 0 is the same as that discussed in section 3 (per-meable wall) and used in �gure 2. The lower Reynolds number cases agree qualitativelywith the results of Uzkan & Reynolds.Note that as the Reynolds number increases the pro�les become steeper at the wall, butdo not penetrate farther into the ow. This suggests that there is a di�erent mechanismat work here, than in the permeable wall simulations (where turbulent transport wasresponsible for Reynolds number variations). Also note that the high Reynolds numbersimulation shows no peak in the tangential Reynolds stress near the wall at later times.
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23This is contrary to the high Reynolds number experimental results of Thomas & Hancock,which showed an increase in the relative peak height as time progressed. The simplestexplanation for this discrepancy is that the Reynolds number is still too low in thesesimulations. However, it is our conjecture that the tangential stress near a shear-free solidwall will never show a peak at long times, no matter how high the Reynolds number.We suspect that the streamwise tangential intensities measured in the Thomas & Han-cock experiment were contaminated by mean shear, despite the fact that they expendedconsiderable e�ort trying to eliminate the e�ects of mean shear. Preliminary studies (bythe authors) of a shear-free channel ow (where the upper channel wall `oated'), showedthat extremely small mean gradients could produce a production term which was compa-rable to the other terms in the Reynolds stress equations. In addition, preliminary studies(again by the authors) of a spatially developing shear-free boundary layer (essentially iden-tical to the experiments), showed that the streamwise derivatives present at the leadingedge of the boundary layer were very large, and resulted in a non-uniform mean velocitypro�le near the wall (though no shear, at the wall itself). The fact that the spanwiseintensities measured in the Thomas & Hancock experiments do not show any peak nearthe wall (and were very unlikely to have been contaminated by production) con�rms thishypothesis. Further evidence for the conjecture that no peak will occur at high Reynoldsnumbers is detailed below.The terms in the tangential Reynolds stress evolution equation are shown in Figure 16 forthree di�erent Reynolds numbers. As might be expected for a ow with strict boundaryconditions on the tangential velocity, the dissipation and di�usion terms are large nearthe boundary. As the Reynolds number increases the magnitudes of these terms increasesomewhat, but their extent in viscous units (p�t) remains almost unchanged.The other term of importance in the balance is the pressure-strain term. The relativeimportance of the pressure-strain increases as the Reynolds number increases. At ReT =374 it makes a substantial contribution to the overall balance. Note that as the Reynoldsnumber increases the extent of the pressure-strain term does not change signi�cantly. Thisis consistent with the earlier conclusion that the extent of pressure-strain term scales withp�T1 (since at long times p�T1 � p�t).Interestingly, the turbulent transport is relatively small in this ow. The strong dampingof the normal turbulence intensity inhibits the transport of turbulence by itself. Thiscontrasts strongly with the case of the permeable wall, where turbulent transport was asigni�cant term, and the contributions from pressure-strain were relatively minor. Thesedi�ering mechanisms (energy transport versus intercomponent energy transfer) explainwhy the Reynolds number variation of the tangential Reynolds stresses is di�erent in thetwo ows. In the permeable wall case, (with energy transport) the tangential Reynoldsstress gradient becomes steeper near the wall at the expense of a reduced stress fartheraway from the wall. In the case of a solid wall, (with intercomponent energy transfer),only a steepening of the pro�les near the wall occurs.The behavior of the pressure-strain term, suggests that at very high Reynolds numbers,su�cient intercomponent energy transfer could occur to cause a peak in the tangentialReynolds stress. Although this is possible, we believe that it is unlikely. We have foundthat viscosity (speci�cally the amount of dissipation, and di�usion near the wall) controls
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Figure 16. Terms in the tangential Reynolds stress budget for turbulence near astationary solid wall. (t=T0 = 1:0) (a) ReT = 54, (b) ReT = 134, (c) ReT = 374. SeeFigure 3. for legend.



25intercomponent energy transfer. Viscous damping removes energy close to the wall, whichreduces the tangential energy available to drive the anti-splat events. The end result is animbalance between splats and antisplats and a net energy transfer. Since dissipation anddi�usion drive near wall intercomponent energy transfer, it is unlikely that the pressure-strain term (representing energy transfer), will be larger than the dissipation and di�usionterms themselves (since this would result in feedback with an exponential growth). Thefact that the pressure-strain and viscous terms act in the same region of the ow (p�t)at long times, implies that no peak is possible. Viscous damping is uniformly larger thanintercomponent energy transfer, in the region where the two processes are primarily active.The normal Reynolds stress for the ReT = 54 case is shown in �gure 17a. These pro�leshave a very similar shape to those found in the free surface case. However, the limitingbehavior near the wall is O(y4) in this case, instead of the O(y2) behavior that is found neara free surface. Figures 17b and 17c show the normal Reynolds stress at Reynolds numbersof 134, and 374, respectively. The highest Reynolds number case, ReT = 374, shows a greatdeal of noise in the far �eld due to inadequate statistical sample, but gives reasonably goodinformation close to the wall. The pro�le at t=T0 = 0:1 is a good approximation to theinviscid Hunt & Graham solution. At latter times the normal Reynolds stress appearsto be approaching an `equilibrium' solution which is slightly below the Hunt & Grahamsolution. This is very similar to the behavior of the normal Reynolds stress near a freesurface. The behavior of the solution at long times, as a function of the Reynolds number,can be seen in �gure 17d. This plot shows that as the Reynolds number increases thenormal Reynolds stress pro�le becomes fuller.Despite the overall similarity of the normal Reynolds stress with the free surface case,the underlying terms in the evolution equation are considerably di�erent. Figure 18 showsbudgets of the terms in the normal Reynolds stress equation. The dissipation and di�usionterms are relatively small. Pressure-strain and pressure transport dominate the near wallbalance. However, the two pressure terms balance very close to the wall, with pressuretransport making up for any loss in energy due to the pressure-strain term. Slightly awayfrom the wall, the turbulent transport term becomes important. As the Reynolds numberincreases the magnitudes of the pressure terms and turbulent transport term increase.Note that the pressure-strain term changes sign. It is negative very close to the wall(transferring energy to the tangential Reynolds stresses), but positive farther away fromthe wall. This behavior is also seen in shearing wall bounded ows such as turbulentchannel ow. The behavior farther away from the wall is thought to be due to standardreturn to isotropy mechanisms. A pressure-strain model based on this basic principal (andthe idea that very near wall pressure-strain is controlled by viscous processes) has beendeveloped in Part II, and shows good agreement with the DNS data.Although considerable emphasis has been placed on the importance of intercomponentenergy transfer in explaining near wall physics, it is important to notice how signi�cantenergy transport is in the overall balance. Both the turbulent transport and pressuretransport terms make relatively large contributions in this ow. These are terms whichare often neglected or combined with other terms, but which contribute signi�cantly inshear-free near wall ows.
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28 6 DiscussionWe have suggested in the previous sections how the concepts of splats and antisplats canbe used to explain the behavior of turbulence near free surfaces and solid walls. We wouldnow like to generalize those ideas to include the permeable wall, so that our conceptualmodel of the near wall region is more universal, and applicable to any type of boundary.In the spirit of Prandtl (1926) we will discuss the interaction of blobs of uid with theboundary. A blob, or region of uid moving towards the boundary is an impingementevent, or a splat. Similarly, a blob of uid moving away from the boundary is an ejectionevent, or antisplat. Splats transfer energy from the normal velocity component to thetangential velocity components. If there is little or no energy loss near the boundary (dueto viscous e�ects), then the uid will travel along the boundary until it encounters anantisplat, where the tangential energy will duly be transferred back into normal energy.This is the situation near a free surface. However, if there are large viscous losses occurringnear the boundary (such as in the solid wall case) then the tangential energy that is inputto the antisplat events is only a fraction of that output by the splat events. This causesthe antisplats to be slightly weaker than the splats on average, resulting in a net energytransfer from the normal velocity component to the tangential component.In the case of the permeable wall, we still have splat and antisplat events as describedin the generalized sense above. However, these structures are no longer stagnation pointregions but blobs of uid which are about to pass through the permeable wall (splats) orwhich have just emerged from the permeable wall (antisplats). As in the solid wall case,there is an imbalance between these two events which is controlled by the viscous processesoccurring very near the wall. This is explained as follows. Because of the @v=@y = 0condition at the permeable wall, a blob of uid does not pass through the wall unaltered.A region of high pressure develops on the wall which distorts the blob (squashes it) untilthe condition is satis�ed. As the blob exits the wall, the process reverses, with the blob ofuid unsquashing back to its normal shape. However, in going from the unsquashed to thesquashed state, energy is transferred from the normal velocity to the tangential velocity.If this tangential energy is quickly dissipated (as it is near the permeable wall) then as theblob emerges from the permeable wall, it has less energy. So due to viscous e�ects near thepermeable wall, antisplats are less energetic than splats, and there is a net intercomponentenergy transfer.It is clear that in terms of intercomponent energy transfer, the solid wall has morein common with the permeable wall than it does with the free surface. Despite, thesimilarities in the structures of the free surface and solid wall, and despite the presenceof wall blocking in both cases, those two boundaries have very di�erent intercomponentenergy transfer e�ects. It is not the boundary conditions on the normal velocity whiche�ect energy transfer, but the boundary conditions on the tangential velocity. Furthermore,viscosity (and energy removal) controls intercomponent energy transfer near boundaries.These surprising conclusions are reinforced by the fact that the pressure-strain term scaleson the length p�T1, and not on the integral length scale L1.There have been several detailed experimental and computational studies concerninghow vortices impact on a wall (Walker et. al. (1987), Orlandi & Verzicco, (1993)). Theyshow that vortex rings are blocked, and that energy is transferred from the normal to the



29tangential velocity components. The model of the near wall region proposed herein, doesnot conict with these results. There is no doubt that uid (any uid, not just vortex rings)impinging on a wall will be `blocked' and transfer energy. However, near wall turbulencecan not be understood solely as a collection of impingement events. Ejection events mustalso be considered, and in the absence of viscosity the large energy transfer occurring inthese two types of events will exactly cancel. This point is belabored yet again, becauseit is absolutely crucial to understanding why the near wall mechanisms proposed in thiswork, di�er fundamentally from what has been proposed in the past.In summary, these simulations have con�rmed that splats do exist, even at very lowReynolds numbers. Splats are not responsible for intercomponent energy transfer nearboundaries, since in the free surface case, there were splats but little intercomponentenergy transfer. Furthermore, intercomponent energy transfer does not cause an increasein the tangential turbulent intensity near the boundary (a peak). In the free surface casewhere a peak was present, it was due the normalization by the free stream value, andreduced dissipation near the boundary. In the solid wall case, no peak was observed,although intercomponent energy transfer was very signi�cant.Intercomponent energy transfer is due to splat events and antisplat events, and in par-ticular, the imbalance between these events. The imbalance between splats and antisplatsis thought to be controlled by viscous processes near the wall. For this reason, boundarieswith strict conditions on the tangential velocity (solid wall and permeable wall) have largerintercomponent energy transfer e�ects, than those with a looser condition (free surface).Although we have emphasized the causes and e�ects of intercomponent energy transfernear boundaries in this work, we note that the Reynolds stress equation budgets showthat all the terms in the equation (not just the pressure-strain) are signi�cant. Althoughconceptually these are very simple ows, in practice the inhomogeneity and anisotropygenerated by the boundary makes them challenging to model accurately. We present someof our ideas on modeling near wall ows in Part II.Financial support for this work was provided by the National Science Foundation, andthe Center for Turbulence Research. Supercomputer time on the Connection Machine wasprovided by the NAS division of NASA-Ames Research Center. The authors would like tothank Peter Bradshaw for his many useful comments during the course of this work.Appendix A. The Inviscid Hunt & Graham AnalysisThe Hunt & Graham analysis is based on rapid distortion theory (RDT), where theNavier-Stokes equations are linearized and the products of uctuating velocities (foundin the convective term) are neglected. The inviscid analysis further assumes that at highenough Reynolds numbers viscous e�ects can be neglected.For temporally developing turbulence with no mean velocity (such as the ows consideredin this work) the inviscid RDT equations areui;t = �p;i (A:1a)ui;i = 0 (A:1b)



30where u is the uctuating velocity, and p is the pressure. The equivalent system of equa-tions can be found in the original Hunt & Graham (1978) paper, with the slight di�erencethat the Hunt & Graham equations are for uniformly convected turbulence (the spatiallydeveloping boundary layer), whereas the temporally developing boundary layer is beingconsidered here. Ultimately the Hunt & Graham system is solved in a uniformly convectingframe of reference (change of variables) so the two equation systems are identical.Equation A.1a is linear and can be solved, given an initial spectrum, in spectral space.This is the approach taken in the original paper, with the ultimate result being an equationwhich expresses the �nal spectrum in terms of an initial spectrum. Energy spectra andrms intensities are then predicted for the cases of an initial Von Karman spectrum andan initial Townsend spectrum. These initial energy spectra result in a decrease (to zero)of the normal turbulent intensity as the boundary is approached. The energy lost by thenormal intensity is transferred to the two tangential intensity components, so they show anincrease as the boundary is approached. The inuence of the boundary on the turbulencecomponents exists over a distance of roughly one large eddy length.The view taken here is signi�cantly di�erent from that of Hunt & Graham. Note thatEquation A.1a represents a projection of an initially divergent vector �eld into the spaceof divergence free vector functions. Integrating equation A.1a over the time interval t� tot+ gives uijt+ � uijt� = �~p;i (A:2)where ~p is the integral of the pressure over the time interval. Using the continuity equationit is clear that if both the initial (t�) and the �nal (t+) velocity �elds are divergence free,then the equation for the pressure is ~p;ii = 0. With Neuman boundary conditions thisequation has the trivial solution ~p is a constant. Therefore, the �nal and initial velocity�elds are identical. In short, only if the initial �eld is divergent, will any change in thevelocity �eld occur. Then the integrated pressure is a solution of ~p;ii = ui;ijt� withNeumann boundary conditions, and the �nal velocity �eld can be found from equationA.2.The crucial observation here is that divergent velocity �elds occur only very rarely. Akey instance is when a wall or surface (with v = 0) is suddenly inserted into a ow. Theonly variable which can respond in such a short time frame is the pressure, which dueto its elliptic nature can respond instantaneously. If the full Navier-Stokes equations areintegrated in time, and the time interval is prescribed to begin just before and to end justafter the boundary insertion, then equation A.2 will again be recovered. The convectiveand di�usive terms integrated over an extremely small interval will be negligible. Only thepressure term, which is essentially a delta function, will remain �nite.Three major conclusions can be drawn from this analysis. First, the Hunt & Grahamanalysis actually applies to the boundary insertion problem (or leading edge problem forthe spatially developing case). It is, in fact, an exact analysis for the case of boundaryinsertion. The second conclusion is a corollary to the �rst. The Hunt & Graham analysisdoes not apply to the subsequent evolution of turbulence near boundaries. After boundaryinsertion, the velocity �eld is divergence free and remains so. The subsequent evolutiondepends on dynamics, speci�cally the convective and di�usive terms that are neglected inthe analysis.



31The �nal conclusion is of a practical nature. Boundary insertion can be simulated usinga Navier-Stokes code (reproducing the Hunt & Graham theoretical results) by drasticallyreducing the computational time step when the boundary is inserted. This e�ectivelycauses the convective and di�usive terms to become extremely small, and allows the pres-sure to appropriately project the velocity �eld into the function space of divergence freevector �elds.Appendix B The Viscous Hunt & Graham AnalysisThe Hunt & Graham paper also proposed solutions for the very near wall region ofwall bounded turbulent ows, where viscous e�ects dominate. The initial starting pointwas again rapid distortion theory, but this time rather than neglecting the di�usion terms(inviscid analysis), the pressure terms were assumed to be small. The resulting equationsfor the velocity components in temporally developing turbulence are then,ui;t = 1Reui;kk (A:3)This has the form of a heat equation, with an error-function solution (equation 2.26 in theoriginal paper).This error-function solution was plotted along with simulation results in �gure 3, and hasthe label \ReT = 0". It has this title because as the turbulent Reynolds number decreasesthe turbulent transport terms and the pressure-strain term become less important in theReynolds stress budget. Equation A.3 e�ectively neglects these terms in the budget, andhence corresponds to the ReT = 0 limit. Note (�gure 2) that even at very low Reynoldsnumbers, equation A.3 is not a very good approximation.REFERENCESBatchelor, G. K. 1956 The Theory of Homogeneous Turbulence Cambridge UniversityPress, 47.Biringen, S. & Reynolds, W. C. 1981 Large-eddy simulation of the shear-free turbu-lent boundary layer. J. Fluid Mech. 103, 53-63.Bradshaw, P. & Bott, D. M. 1993 A moving-oor test section for simulating highfree-stream turbulence AFOSR Contractors Meeting - August 1993 4.1-1.Brumley, B. 1984 Turbulence measurements near the free surface in stirred grid exper-iments. Gas Transfer at Water Surfaces W. Brutsaert & G. h. Jirka (eds.), ReidelPublishing Co. 83-92.Durbin, P. A. 1993 A Reynolds stress model for near-wall turbulence. J. Fluid Mech.249, 465-498.Hallback, M. & Johansson, A. V. 1992 Modeling of pressure-strain in homogeneousturbulence. Advances in Turbulence 4, TU Delft, Holland.Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscousincompressible ow of uid with free surface. Phys. Fluids 8, 2182-2189.
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