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ABSTRACT 

Fractional step (or projection) methods are a widely 
used technique for uncoupling the pressure solution 
in the incompressible Navier-Stokes equations while 
still satisfying the incompressibility constraint.   
Traditional fractional step methods have a time 
splitting error that can become quite significant if any 
of the terms in the momentum equation are treated 
implicitly.  Higher order splittings with less error are 
possible but can be expensive and cumbersome.  In 
this paper an approach is demonstrated that still 
eliminates the pressure efficiently yet results in no 
splitting error.   It is shown that this approach is 
relatively general and can also be applied to different 
numerical methods and other types of constraints 
(such as immersed boundary constraints).  In 
addition, it is shown that iterative inversion methods 
require fewer iterations (and therefore reduced cost) 
when the exact projection method is used compared 
to more traditional approaches.   

1. INTRODUCTION  

The basic idea behind all fractional step methods is to 
make some estimate of the velocity field at the next 
time level and then correct this estimate (which is not 
divergence-free) as little as possible so that the 
incompressibility constraint is satisfied.  The 
alteration of the estimate to satisfy the divergence-
free velocity constraint means that the momentum 
equation is not satisfied by the final velocity solution.  
The correction for the constraint introduces some 
error.   A detailed analysis of this splitting error and 
traditional methods for reducing it are discussed in 
[1].   

The incompressible (constant viscosity) Navier-
Stokes equations in primitive variables are given by 
the equations, 
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where u is the velocity vector, p is the kinematic 
pressure (divided by density), and ν is the kinematic 
viscosity.   

When these equations are discretized using primitive 
variables they result in the following coupled matrix 
problem for the velocity and the pressure, 
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where G  is the discrete gradient operator and D is 
the discrete divergence operator.  The matrix A 
contains the mass matrix (which is often diagonal in 
finite volume methods) as well as contributions from 
any implicit diffusion and convection.  If convection 
is fully explicit the matrix A is symmetric and 
positive definite.  The vector, nr , contains the 
explicit diffusion, convection, and even sometimes 
explicit pressure, contributions.  The final vector 
represents the influence of boundary conditions.   
There is some debate over the exact time level of the 
pressure variable.  The pressure variable is actually a 
time average over the time interval, and as such has 
no particular time level associated with it.   
 
The system given by Eqn. (2) could simply be 
inverted using a sparse matrix iterative solver.   
However, even when the matrix system is symmetric, 
it is not positive definite and the most attractive 
iterative solvers (like conjugate gradients) can not be 
applied.    In addition, the system is fully coupled and 
therefore quite large.  The work per iteration scales 
with the number of unknowns, and the number of 
iterations scales as the number of unknowns to the 
1/2 (2D) or 1/3 (3D) power.  Fractional step methods 
are a way to simplify Eqn (2) into a sequence of 
simpler, and numerically easier to solve, sub-
problems.   



  

2. CLASSICAL FRACTION STEP METHODS  

Classical fractional step methods can be seen as an 
approximate block LU decomposition of Eqn (2) [1]. 
The exact block LU factorization of (2) is  
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The negative sign in the lower right block is why the 
full system is indefinite. Fractional step methods are 
equivalent to the block LU decomposition, 
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where 1−Aɶ  is an approximate inverse.  If all terms in 
the Navier-Stokes equations are updated explicitly 
except for the pressure, and a finite volume method is 
used then A is diagonal and the fractional step 
method can be implemented exactly with no splitting 
errors.    
 
The LU decomposition splits the large indefinite 
system given by Eqn (2) into smaller problems 
involving the inversion of A and the inversion of the 

discrete Poison matrix 1−DA Gɶ .  The matrix A is an 
advection-diffusion operator that is often already 
coded and which sometimes can be further 
simplified.  The discrete Poison equation is often 
symmetric and is always a positive definite matrix.     
 
When the matrix A contains implicit advection and 
diffusion contributions or a mass matrix (such as for 
finite element methods), finding an accurate 

approximate inverse  1−Aɶ  can be challenging.  Even 
when formal order of accuracy requirements are met, 
the resulting approximate inverse can lead to 
practical errors that are large enough to be 
disconcerting.   
 
In addition, a further more subtle point must be made 
about the classical fractional step method.   Inexact 
solution of the discrete Poison equation for the 
pressure (and all iterative methods are inexact to 
some extent) leads to errors in the dilation (velocity 
divergence not equal to zero).   So while fractional 
step methods make the solution close to 
incompressible, they are not exactly incompressible 
and the errors in the pressure solution (due to 
iterative solution – not the splitting error)  result in 
velocity fields with local mass generation and 
destruction.   
 
The exact fractional step methods have no splitting 
error, but in addition errors due to inexact solution of 

the matrices leads only to errors in the vorticity – not 
the dilatation. Incompressibility is satisfied to 
machine precision at all times. 

3. EXACT FRACTIONAL STEP METHODS 

Exact fractional step methods are not an approximate 
block LU decomposition.  Instead they use properties 
of the discrete gradient, G, and divergence D 
operators to simplify the system. 

The discrete divergence operator is always wider than 
it is tall.  This must be case or else the number of 
incompressibility constraints would outnumber the 
number of velocity variables and the system would 
be over-constrained and unsolvable.  There are 

therefore a number of vectors ic (with a length equal 

to the number of velocity unknowns) which lie in the 

null space of the divergence operator, i =Dc 0 .   A 

solution for the velocity which is a linear 

combination of these ic  will always satisfy the 

incompressibility constraint to machine precision. 

The key to exact fractional step methods is that the 

ic  can always be formed so that they are sparse 

vectors.  For most methods, the full set of  ic  vectors 

are easily formed explicitly.   If we define the set of  

ic  grouped as column vectors as the matrix C, then 

we have 1 1n nu s+ += C , and =DC 0 , so that the 
incompressibility constraint is always satisfied 

exactly (even when the new unknowns 1ns + have 
some error).   

This is a discrete analog of the curl operation.  So 
1ns +  is a discrete analog of the streamfunction 

vector.  This does not make the method a 
streamfunction method.  Most importantly, boundary 
conditions on the streamfunction are not required, 
and frequently only certain components (not the 
whole vector) of the real streamfunction are 

represented by 1ns + .  This is purely a matrix 
transformation that reduces the number of discrete 
unknowns while exactly satisfying the constraints.   
The physical analogy does however allow one to see 
how to easily generate the sparse curl matrix, C.  The 
matrix C is actually generated via its rows, not its 
columns.  Each row corresponds to a line integral 
around a small closed loop.  The smaller the loops – 
the sparser the matrix.    



  

For the very small (2 cell) unstructured staggered 
mesh shown in Figure 1, the divergence operator is 
given by, 
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Figure 1.    Location of normal velocity components 
and pressure unknowns in a two-dimensional 

unstructured staggered mesh. 
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and the curl matrix is given by  
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In 3D, each row of C is the loop formed by the edges 
surrounding each face.  In 2D, such as this example, 
C is the difference between the two vertices 
connected by each edge. See [2,3] for more details.  

When the discrete curl is used, Eqn (2) becomes 
1

1
n ns p r bc+ + = +AC G   (5) 

and the divergence constraint is automatically 
satisfied.   But equation (5) has a different number of 
unknowns than equations and can be further 
simplified by eliminating the pressure.    
 
In contrast to the divergence operator the gradient 
operator, G is taller than it is wide.  This means that 
its columns form the null space of some other matrix, 
referred to as R.   In matrix terms, =RG 0 .  This is 
the discrete equivalent of the continuous identity 

( ) 0∇×∇ = .  The ‘rotation’ matrix R is therefore a 

different discrete curl operator.  Many different 

matrices R exist.  Some are very sparse and easy to 
construct.  It is these sparse easily constructed 
matrices that make the exact fractional step method 
viable.  
 
For finite element methods or staggered mesh 
discretizations the two discrete curl operations are 
closely related and are transpose operations,  

T=R C .  In 2D each column of R corresponds to a 
loop (sometimes unclosed on the boundaries) of all 
the edges around a vertex.  In 3D the loops (rows of 
R) are typically around an edge (if the divergence is 
defined by a sum over cell faces) and pass through 
each face touching that edge. 
 
Applying the ‘rotation’ matrix gives the exact 
fractional step method, 

1
1( )n ns r bc+ = +RAC R   (6) 

The matrix RAC is often symmetric (if A is), and is 
always positive definite.  The system given by Eqn.  
(6) is both easier to solve numerically that Eqn. (2) 
and contains far fewer unknowns.  For 3D 
unstructured staggered mesh methods the reduction 

in unknowns from Eqn (2) is roughly 6
15 40%= .  In 

2D it is 1
5 20%= .  On Cartesian meshes the 

reduction is somewhat less (only75% for 3D grids 
and 33% for 2D grids).   

However, the real savings come from the reduced 
number of iterations necessary for Eqn (6) as 
compared to the original system (Eqn 2) or the 
classical fractional step method (essentially Eqn 4).  
Iterative solvers for Eqn (6) can be terminated when 
the iteration error is roughly equal to the truncation 
error of the discretization scheme, so very few 
iterations are required.  No matter how large the error 

in the solution for 1ns + , the resulting velocity field 

given by  1 1n nu s+ += C  is always divergence free to 
machine precision.  In contrast, truncation of the 
iteration procedure in the Poisson equation for the 
pressure in the classical fractional step method (or 
iteration errors from an interative solution of the full 
matrix system, Eqn 2) lead to large dilatation errors 
(mass creation and destruction) that are very 
detrimental to the total solution accuracy. 

While the matrixRAC could be formed explicitly 
this is not recommended for unstructured mesh 
solutions because the resulting stencil becomes larger 
than nearest neighbor. In many iterative solvers, 
explicit matrix construction is not required, only the 
matrix vector product needs to be computed.   



  

4. RESULTS 

The affect of the splitting error that results from the 
classical fractional step method is assessed in figure 
2.  In this test we study the temporal evolution of 2D 
lid driven cavity flow at a Reynolds number of 100 
on an unstructured mesh containing 4024 triangles.  
The convection term is advanced using fully explicit 
2nd order Adams-Bashforth, the diffusion term uses 
2nd order trapezoidal time advancement.  The splitting 
error of the classical fractional step method causes 
this nominally second order scheme to be first order 
accurate, whereas the exact fractional step method 
introduces no splitting error.   
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Figure 2.  Effect of splitting error on the time 
accuracy of the classical fractional step approach. 

 

For lower Re number simulations the first order 
splitting error is larger and the difference between the 
two solutions increasingly pronounced.  When 
implicit convection is used, the splitting error is 
always large.  The results in figure 2 required very 
stringent tolerances (many iterations) on the Poisson 
solver in order to remove the equally detrimental 
effects of dilatation errors (and erratic convergence).  
The tolerances on the exact fractional step method 
where able to be much looser (requiring far fewer 
iterations).  

The effect of iteration errors are shown in figure 3.  
In this case the error is measured during the CG 
iteration process.  The ‘exact’ solution is the solution 
after many iterations, so the reported error does not 
include the splitting error shown in figure 2, just the 
iteration error.  Figure 3, shows that dilation errors 
(found in the classical fractional step method) are far 
more difficult for the CG solver to remove than the 
purely ‘vortical’ errors (found in the exact fractional 
step method).   For a given accuracy level the exact 
method requires far fewer CG iterations (on the order 
of a ¼), and therefore less computational time. 
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Figure 3.  Effect of iteration error on the classical 
fractional step and exact fractional step methods. 

The exact fractional step method is not more complex 
to implement that the classical fractional step 
method.  Figure 4a-c shows a fairly complex 3D 
unsteady, two phase flow simulation of droplet 
collision using a moving unstructured mesh and the 
exact fractional step method.   

 

Figure 4.  Simulations of droplet collision using the 
exact fractional step method. 
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