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ABSTRACT 
A general methodology for the solution of Partial 
Differential Equations (PDEs) is described in which 
the discretization of the calculus is exact and all 
approximation occurs as an interpolation problem on 
the material constitutive equations. The fact that the 
calculus is exact gives these methods the ability to 
capture the physics of PDE systems well. For 
simplicity, the construction of a cell based method 
applied to the unsteady heat equation on an 
unstructured mesh is used to illustrate the Discrete 
Calculus approach, although the approach can be 
used to construct node-, face- or edge-based methods 
applied to any PDE system. Numerical experiments 
are included to reveal the accuracy and time 
performance of the method. 

1. INTRODUCTION 

Physical systems are often described by Partial 
Differential Equations (PDEs). It is a common belief 
that discretization of PDEs require approximation. 
This, however, need not be true and it is possible for 
the discrete equation system to be exact [1]. A new 
approach to discretization, the Discrete Calculus 
Approach, is presented in this paper. It exactly 
discretizes the calculus in a PDE and forces all 
approximations (or errors) into the PDEs constitutive 
relations.  This approach has the attractive feature 
that it exactly captures the underlying physical 
properties of the system [2,3]. Every PDE can be 
thought of to be composed of two parts – an exact 
part (the conservation laws and mathematics) and an 
approximate part (the constitutive relations). The key 
to the proposed method is to exactly discretize the 
conservation laws and mathematics and introduce 
numerical approximations only in the constitutive 
relations where physical approximations are already 
being made.  

In order to focus on the numerical scheme rather than 
the intricacies of the equation being solved, this work 
focuses on the simple unsteady heat diffusion 
equation to illustrate the Discrete Calculus Approach.   
A ‘mixed’ cell-based method is derived in Section 2 
and the discrete operators (div, grad, curl) generated 
by the Discrete Calculus approach are shown to 
mimic all important properties of the corresponding 
continuous operators. Section 3 presents several 
numerical tests comparing the accuracy and cost of 
the method against a classical Finite Volume method. 
The paper concludes with a discussion of the results.  

2. THE MIXED METHOD 

2.1 Discretization Scheme 
In order to make the presentation of the Discrete 
Calculus method concrete, a simple equation is used 
that is common to many fields of engineering and 
science – the heat equation. 

( )cT
t k Tρ∂

∂ = ∇ ∇�                (1) 

In heat transfer, the temperature T is the fundamental 
unknown, and the material properties are k, the 
conductivity, and �c, the heat capacity. However, this 
equation, or slight variants, finds applications in 
many other fields with different physical 
interpretations for the variables.  

It is convenient to consider the heat equation in an 
expanded form that clearly separates the 
physics/mathematics from the material constitutive 
approximations. 

i
t

∂
∂ = −∇ q�       Conservation of energy            (2a) 

T= ∇g                Definition of gradient              (2b) 

k= −q g               Fourier’s Law                          (2c) 

i cTρ=                Perfectly Caloric Material      (2d) 



  

This formulation introduces two new variables, i the 
specific internal energy and q the heat flux. The last 
two (algebraic) equations are physical 
approximations for the material. Far more complex 
constitutive equations, such as a tensor conductivity, 
could easily be substituted. All numerical 
approximations will also be restricted to the 
constitutive equations.  The first two equations, 
containing the physics and calculus, will be 
discretized exactly.  The advantage of discretizing the 
physics and calculus exactly is that the resulting 
numerical methods and discrete solutions cannot 
violate any physical or mathematical principles.  

Integrating Eq, (2a) over each cell of the domain and 
over the time interval gives the exact discrete 
equation, 
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There is one equation for each cell in the domain. 
The discrete unknowns in this equation are 

c c
I idV= � the total energy in the cell at a certain 

time level and 1 ˆf t f
Q dt dA∆= � � q n�  the time 

averaged heat flux through the cells faces.   

So far the method looks like a classic Finite Volume 
method or Discontinuous Galerkin method. The key 
difference in the Discrete Calculus approach lies in 
the discretization of Eq. (2b). In addition to 
discretizing (2a) exactly, it is critical that Eq. (2b), 
the definition of the gradient, also be discretized 
exactly or the advantages of exact dicretization are 
lost.  Exact discretization of Eq. (2b) can be achieved 
by integrating along some line connecting the cell 
centers (or centroids). This gives the exact discrete 
equation 

2 1c cd T T= −�g l�                                                 (3b) 

This is one equation for each face, where Tc is the 
value of the temperature at the cell center and 

fg d= �g l� is the average gradient along the line 

connecting the cell centers. Actually any path 
connecting the cell centers is possible, but the line 
joining the face centroid to the cell centroids of the 
two adjacent cells is considered in this work (which 
corresponds to the median dual mesh).  

In linear algebraic terms, Eqs (3a) and (3b) may be 
written as 

1 ( )n n BC
c c f fI I t DQ Q+ − = −∆ +                          (4a) 

1 1n n BC
f c fg GT T+ += +                                           (4b) 

where D and G are the discrete divergence and 
discrete gradient operators respectively and Tf

BC and 
Qf

BC are prescribed Dirichlet and Neumann boundary 
conditions respectively. The placement of the 
unknown variables is illustrated in Fig. 1.  

 

 

 

 

 

 

 

Figure 1. Placement of unknowns in the cell-based 
Mixed method. 

 

2.2 Discrete Operators 
The discrete divergence D takes information from 
faces and produces a result that resides on cells.  The 
discrete gradient G transfers information from the 
cells to faces. The Discrete Calculus operators are 
sparse matrices whose non-zero entries are ±1. For 
the simple 2D mesh shown in Fig. 1, the 
corresponding operators are  
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Note that the gradient operator G is a 5x2 matrix 
converting cell values (2 cells) into face values (5 
faces). Similarly, the discrete divergence D converts 
face values into cell values. It is easy to see the 
symmetry between the operators (i.e.) G = -DT. The 
operators D and G are discrete versions of the 
continuous divergence and gradient operators. They 
were derived using versions of the Gauss-Green 
theorem and no approximation was used in their 
derivation. The result is that these discrete operators 
mimic most of the mathematical properties of the 
corresponding continuous operators. For example, the 
only solution to 0φ∇ =  on an infinite or periodic 

domain is φ  is constant. Similarly, the only solution 

Tc1 Tc2 

Qf2 Qf1 Qf3 

Qf4 Qf5 



  

to the discrete problem 0cGφ =  on a periodic 

domain is that the vector of unknowns cφ  is constant. 

In the context of heat transfer, this implies that zero 
heat flux results in a constant temperature solution. 
Similarly, 0φ∇×∇ = , the gradient operator is 
always the null-space of the curl operator. In the 
Discrete Calculus approach, the sparse discrete curl 
operator C which is the (oriented) sum of edge values 
to face values (circulation on the face) has this same 
property, CG=0 [2].  

2.3 Discrete Equation Closure 
The system comprised of algebraic equations Eq. (4a) 
and (4b) is discrete and exact, but closure and 
solution of this system requires relating the heat flux 
at the mesh faces, fQ , to the temperature gradient 

along the line connecting the cell centers, fg .  It also 

requires relating the temperature at the cell-centers, 

cT  , to the total energy in the cells, cI .  These 

relationships are essentially interpolation problems. 
Mathematically, the desired relations are written as, 

( )
1

/ ( (1 ) )n n
f e ekA LQ M g gα α+= − + −                (4c) 

( )
1 1n n

c ccVI M Tρ
+ +=                                          (4b) 

where ( )/kA LM  and ( )cVM ρ  are transfer matrices 

that connect quantities on different meshes (the 
primary and dual meshes) and contain information 
about the material properties and specific mesh 
geometries.  The quantity α  dictates the time 
stepping scheme ( 1α =  will result in implicit Euler, 

0α =  will result in explicit Euler, and 1
2α =  will 

result in the second order trapezoidal time stepping 
scheme).  We will use the shorthand notation, 

11 (1 )n n
e e e etg g dt g gα α+

∆= = + −� .  In the 

discrete calculus approach the parameter α  arises 
from the approximation of the time integral of the 
gradient.  The time derivative itself is integrated 
exactly. 
 
Note that Eqs. (4c) and (4d) directly correspond to 
the material constitutive equations Eqs. (2c) and (2d). 
These material relations cannot be implemented 
exactly because the unknowns are averages over 
different geometric structures. For a lower (second) 
order method, we may assume that the heat flux is 
constant on faces and the divergence is constant in a 
polygonal cell (a first order approximation for the 
heat flux), then the flux can be approximated by 

1/ 2 1
c

n
c fc fV

f

Q+ = �q r                                           (6) 

where fc f c= −r x x  is the position vector from the 

cell centroid to the face centroid, and cV  is the cell 

volume.  Using a first order integration along the line 
connecting the cell centers then gives, 
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In matrix terms, Eq. (7) can be written as 

1
c
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is symmetric, positive definite and sparse.  
 
For the other transfer matrix ( )cVM ρ , we have, 

1 1n n
c c cI cV Tρ+ +=                                                    (8) 

which is second order accurate since the temperature 
is located at the cell centroid. Combining Eqs (4),(7) 
and (8), we have the coupled system, 
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Because the system Eq. (9) requires the simultaneous 
solution of both the temperature and the heat flux, it 
is referred to as the Mixed Method.  Since α  and 

t∆  are constant this matrix system can easily be 
symmetrized, 
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As far as the authors are aware, this method is 
completely new and represents an example of how 
the Discrete Calculus approach can lead to novel 
numerical methods that by their very construction 
must capture the physics of the system well.  
 
Note that while symmetric, this equation system is 
indefinite (it has both positive a negative 
eigenvalues).   Also note that, 0α =  the explicit 
Euler method, is not possible with this method.  This 
is due to the fact that the continuous equation system 
is parabolic, and the discrete system must be at least 
partially implicit to capture the infinite propagation 
speeds associated with parabolic systems.  For steady 

state calculations  0cV
t

ρ
∆ →  and 1α → . 

3. NUMERICAL RESULTS 
This section compares the performance of the 
proposed method with a classical Finite Volume 
method. The metric of method performance used in 



  

this work will be the level of accuracy obtained for a 
given computational cost. The following subsections 
first present a traditional Finite Volume method, and 
then tests comparing the accuracy and cost of the 
Finite Volume method and the Discrete Calculus 
method. 

3.1 Classical Finite Volume Method 
These methods also use the conservation equation 

( ) 0cd cVT
fdt DQρ + =  where cT is typically located at 

the cell centroid.  The key in these methods is to 
relate the face flux fQ to the cell temperature cT . In 

order to account for strong mesh distortions, typically 
a flux scheme is employed that relates the heat flux 
and temperature as 

( ) f

f f f c fQ kGT= − + d n
d dq n q d �

�

� �                 (11) 

where 2 1c c= −d x x  and the face heat flux 

vector ( )1 1 1 2 2 2f w k T w k T= − ∇ + ∇q is constructed 

using an estimate of the temperature gradient 
computed as 

1 1
c c f fV Vc

f

T TdV T∇ = ∇ = �� n                       (12) 

where the face average temperature fT is obtained by 

some weighted average of the cell temperatures.   
 
On a Cartesian mesh (or equilateral triangular mesh) 
the correction terms involving fq  cancel and only 

f cQ kGT= −  remains.  The method then becomes 

identical to a Discrete Calculus method based on the 
Veronio dual (rather than the median dual used in 
section 2) [2].   

3.2 Discontinuous Conductivity 
The discrete calculus method derived in this paper is 
linearly exact, even when the material properties are 
discontinuous across the domain. In order to illustrate 
this, a test problem from Shashkov [4] and Morel et. 
al. [5] is considered in this section. Although the 
theory for discontinuous coefficients only implies 
that the normal component of heat flux should be 
continuous, many numerical methods (such as the 
finite volume method described above) also assume 
that tangential flux components are continuous at a 
discontinuity.  Such methods will have difficulties 
when solving for conduction that occurs at an angle 
to the discontinuity. 

The mesh (shown in Fig. 2) is divided into two 
different materials with different diffusivities along 

the interface x=0.5. Note that the discontinuity in the 
material is captured by the mesh. 

 
Figure 2. Mesh with different diffusivities 

 

The diffusion coefficients are defined by, 
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Dirichlet boundary conditions are enforced such that 
the exact steady state solution is, 

1 2 1
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0 0.5

0.5 1k k k
k k

x

x

a bx cy
T

a b b x cy−

≤ ≤

< ≤

+ +	�= � − + +��
   (14) 

This problem has a discontinuity in the tangential 
flux at the material interface.  The normal component 
of the flux (bk1) is the same across the entire domain. 
However, the tangential flux component is k1c on the 
left side and k2c on the right side of the interface. The 
numerical experiments employ a=b=c=1, k1=4 and 
k2=1. The boundary conditions are applied to the 
boundaries as shown below. 
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                      (15) 

The calculated temperature isolines for this problem 
are shown in Fig. 3.  The solution obtained by the 
Discrete Calculus method agrees with the exact 
answer to machine precision.  



  

 
Figure 3. Isolines of temperature contours 

 

3.3 Quadratic Problem 
In this test, the accuracy of the Discrete Calculus 
method is compared with the Finite Volume method 
in a steady state heat diffusion problem ( S∇ =q� ) 
with a constant source on a unit square domain as 
shown in Fig. 4. 

 
Figure 4. Typical mesh used for convergence study 

 
Dirichlet boundary conditions are imposed on the left 
and right boundaries and homogeneous Neumann 
boundary conditions are imposed on the top and 
bottom boundaries. The exact solution 

2( ) 2 2T x x x= −  is a quadratic function.  
 
The spatial accuracy of the Mixed Method is 
compared against the traditional Finite Volume 
method in Fig. 5. The discrete L2 norm of the 
temperature error at the cell centers is used as an 
error metric. 

 
Figure 5. Accuracy of the DC and FV methods 

 
It is seen from Fig. 5 that the Mixed method exhibits 
second order convergence while the Finite Volume 
method tends to be first order accurate with higher 
mesh resolution.  
 

3.4 Computational Cost for a Desired 
Accuracy 
Although the Discrete Calculus method was shown to 
be more accurate than the Finite Volume method in the 
previous test, it might be more important to compare the 
cost-effectiveness of the Discrete Calculus method 
against the classical method. Hence, the computational 
cost (in terms of the CPU time) is plotted against the L2 
error norm in Fig. 6 for the same problem considered in 
the previous section.  This really compares the cost 
incurred for a desired accuracy level. 
 

 
Figure 6. Cost incurred for a desired accuracy level 

 
It is observed from Fig. 6 that for any given accuracy 
level, the Discrete Calculus method is always more 
cost-effective than the traditional FV method. Also, it 
is clearly seen that the cost for the corrected FV method 
tends to increase more rapidly than the Discrete 
Calculus methods as the need for accuracy increases. 
 



  

3.5 Heat Transfer in a Crank Shaft 
The Discrete Calculus method presented is applicable 
on any general 3D unstructured mesh, although the 
previous tests were run on 2D geometries. In order to 
illustrate this, a more realistic problem is considered in 
this section, which involves solving Eqn. (2) on a 
complex 3D geometry. A typical mesh considered for 
the analysis is shown in Fig. 7. The coarsest mesh 
considered has 864 nodes and 2339 cells and the finest 
mesh contains 73875 nodes and 360512 cells.  
 

 
 

Figure 7. Crank Shaft Mesh 
 
Fixed temperature (Dirichlet) boundary conditions are 
applied to the inlet and outlet faces (crankshaft ends) 
and the sides are insulated. Typical temperature 
contours are presented in Figure 8.  

 
 
Figure 8. Temperature contours along the crank shaft 
 
The heat flux through the inlet and outlet faces (which 
were verified to be equal) are measured against the 
mesh size for the Discrete Calculus method and 

extrapolated to obtain the ‘exact’ heat flux.  This exact 
heat flux is then employed to compute the error in the 
Finite Volume and Discrete Calculus methods (Fig. 9).  
The mesh size (dx) is computed as the cube root of the 
average cell volume.  
 

 
Figure 9. Accuracy of DC and FV methods 

 
The computational time taken per solver iteration is 
then plotted against the percentage error, which gives 
the cost required to obtain a certain accuracy level 
(Figure 10), which is in agreement with the results of 
the previous section.    

 
Figure 10. Cost of DC and FV methods on the Crank 

Shaft case 
 

4. DISCUSSION 
A new approach to discretizing Partial Differential 
Equation systems – the Discrete Calculus approach – 
is introduced that discretizes the underlying physics 
and mathematics of the PDEs exactly and introduces 
approximations only where physical approximations 
are also made (in the constitutive equations). An 
illustrative cell-based numerical method – the Mixed 
Method – is derived using this approach and is shown 
to be second order accurate on generic unstructured 
meshes and more cost-effective than traditional Finite 
Volume methods. 
 
Although the number of unknowns is more for the 
Mixed method than for the classical Finite Volume 



  

method, the memory requirements for the actual 
implementation for both the methods are comparable, 
since the correction term in the Finite Volume 
method also requires additional storage on mesh 
faces. The problem considered in Section 3.3 was 
used to test the memory requirements for the Mixed 
and the Finite Volume methods using a mesh 
containing 91852 cells and 138178 mesh faces, and 
both the methods reported an overall memory usage 
of 32 MB (as inferred from the Windows Task 
Manager).  
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