
 

 

   Abstract—Cache-based, general purpose CPUs perform at a 

small fraction of their maximum floating point performance when 

executing memory-intensive simulations, such as those required 

for sparse matrix-vector multiplication. This effect is due to the 

memory bottleneck that is encountered with large arrays that 

must be stored in dynamic RAM. An FPGA core designed for a 

target performance that does not unnecessarily exceed the 

memory imposed bottleneck can be distributed, along with 

multiple memory interfaces, into a scalable architecture that 

overcomes the bandwidth limitation of a single interface.  

Interconnected cores can work together to solve a computing 

problem and exploit a bandwidth that is the sum of the 

bandwidth available from all of their connected memory 

interfaces. This work demonstrates this concept of scalability with 

two memory interfaces through the use of an available FPGA 

prototyping platform. It is shown that our reconfigurable 

approach is scalable as performance roughly doubles when two 

FPGAs are used for computation instead of one. 

 
Index Terms—FPGA, Sparse matrix-vector multiply 

 

I. INTRODUCTION 

parse matrix-vector multiply (SMVM) computations 

perform poorly on cache-based CPUs because they are 

highly memory intensive, have large sizes and require frequent 

data updates. As an example, we consider sparse matrices that 

arise from the finite element analysis used in several 

disciplines to find approximate solutions to boundary value 

problems. Sparse matrix-vector multiplication involves 

iteratively multiplying a sparse matrix with a dense vector that 

changes on every iteration. This is a stream-based computation 

that lacks temporal locality and restricts the performance 

advantage that a cache-based CPU would have as a result of 

repetitive data use.  

 

As cache hits in SMVM are rare, the speed of the algorithm 

is entirely dictated by the sequential and random memory 

access bandwidth. This “memory bottleneck” causes 

processors to run at a small fraction of their peak floating point 

rate for scientific computations resulting in a performance of 

MFlops as opposed to GFlops. The floating point performance 

is observed to drop down to as low as 2.7% of the peak value 

of the CPU. An approach to overcome this memory wall by 

using a system of FPGAs with external memory banks as a 

math co-processor is implemented. The FPGA-based system is 

demonstrated to be scalable; the memory bandwidth of the 

FPGAs and hence the floating point performance of the 

FPGA-based implementation can be linearly increased by 

increasing the number of FPGAs or the memory interfaces per 

board. 

  

Section II explains the motivation for implementing the 

SMVM problem on a system of FPGAs. The floating point 

performance for scientific computations is non-contingent on 

the clock frequency [1]. The use of multiple cores is 

complicated because concurrent techniques other than multi-

threading must be used by the programmer [2]. Increases in 

processor clock speed and in the number of cores per 

processor are current microprocessor industry trends. For 

sparse matrix-vector multiply these improvements are 

unhelpful because they do not address the memory bottleneck.  

 

Section III gives an overview of the SMVM problem that 

arises in an iterative simulation of two-dimensional heat 

transfer. The differences between the sparsity patterns of the 

sparse matrix for this problem are highlighted and an alternate 

data structure that can store a sparse row and a sparse column 

matrix with equal efficiency is explained.  

 

Section IV looks into previous work for similar problems 

that use approaches that are different than ours. Matrices 

undergoing computation are stored in formats that are either 

efficient for a sparse row format or a sparse column format, 

but not both. The problem size constraints which arise due to 

limited on-chip memory storage of sparse matrices and dense 

vectors are explained.  

 

Section V details our choice of FPGA board for this 

implementation. Candidate boards are required to have dense 

off-chip memory modules and inter-board communication 

abilities.  

 

In Section VI we detail the implementation algorithm for 

SMVM on multiple boards. In our approach, operands, 

operators and memory addresses that include board address 

information are organized into packets to distribute 

computations between FPGAs. A system of FIFOs is used to 

implement a streaming paradigm on these packets, where data 

is fetched from DRAM memory if FIFOs are non-empty. Data 

values stored in a FIFO is subsequently processed. Based on a 

fetch or write memory address, data packets are routed to a 

destination FPGA by a router sub-system. The implementation 

Reconfigurable Sparse Matrix-Vector 

Multiplication on FPGAs 
 Salma Mirza and Russell Tessier                   J. Blair Perot 

Dept. of Electrical and Computer Engineering      Dept. of Mechanical and Industrial Engineering 

University of Massachusetts            University of Massachusetts 

  Amherst, MA 01003                 Amherst, MA 01003                                       

S 



 

 

algorithm is exactly the same for a gather or a scatter 

operation, and hence, the efficiency of either operation 

remains the same. The size of a matrix is limited by the size of 

the external memory. For bigger matrices, this architecture can 

be scaled by using more FPGAs or bigger memory modules. 

 

Section VII contains the results and some conclusions for 

this work. A single board implementation performs at 12 

MFlops. A two-board implementation performs at 24 MFlops, 

indicating that our system is scalable. Section VIII highlights 

planned future work.  

II. MOTIVATION 

   Simulations allow scientists to quantitatively predict results 

of real-life phenomena for a range of input conditions and with 

a programmable degree of accuracy. In many cases, 

simulations are preferred to physical experiments because they 

are often cheaper, faster and less dangerous than these types of 

experiments. For a reasonably good mathematical model, the 

accuracy of the simulations is given by how closely a 

simulation setup can imitate a physical experimental setup. To 

increase accuracy, the problem must be made larger. This 

translates to an increase in the number of computations, which 

in turn is constrained by the available computing resources and 

their efficiency.  

 

Low-cost commodity computers are most often used in 

clusters for scientific simulations. Commodity computers 

utilize a cache-based architecture which is ill-suited for 

streaming applications.  SMVM performs poorly on cache-

based CPUs because of the vast and constantly changing data 

associated with iterative simulations. The data set is usually 

too large to fit in the CPU cache and exhibits little temporal 

locality, making cache hits rare. The speed of computation is 

limited by memory access times that, typically, are at least ten 

times slower than the time taken to perform an operation on 

the CPU. This problem is particularly apparent in the DAXPY 

(double precision y = ax + y) operation.  

 

Figure 1: Discretization of a PDE over a triangular mesh 

The construction and storage of a sparse matrix prior to 

computation is difficult, expensive and unnecessary. If 

constructed at all, the sparse matrix should be stored in an 

alternate representation, either a compressed row or 

compressed column representation, whichever may be more 

appropriate for the matrix at hand [3]. Computer codes that 

actually build matrices slow down the simulations because of 

the memory access times involved. This issue ultimately 

restricts the accuracy at which the simulations can be 

performed in a constrained time period.  

III. BACKGROUND 

 

Consider the problem of two-dimensional heat transfer on 

an unstructured mesh, as shown in Figure 1. To discretize the 

partial differential equations associated with this problem, the 

mesh is divided into smaller domains. In practice, the mesh 

may consist of 100,000 sub-domains for a 2-D problem, and a 

million tetrahedras for a 3-D problem. Dividing the mesh into 

smaller sub-domains results in a more accurate solution, but 

also involves more data and intensified computation. For the 

purpose of simplification, we consider a triangle that is a part 

of a larger mesh, as shown in Figure 1. The temperature 

unknowns are located at the four vertices and are calculated 

iteratively in two steps. The temperature gradient along the 

edges is calculated as the first step. Roughly, this value is the 

difference in temperature at the vertices that connect an edge 

divided by the length of the edge as shown in Figure 2.   
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Figure 2: The Gradient Operation (Gather) 

 

This is a gradient operation and in matrix form, it is 

represented by y = Gx 
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The matrix G is a sparse matrix. Every row of G contains 

exactly two non-zero items. For simplicity, we refer to non-

zero values as items. In relation to the problem at hand, the 

number of columns in the matrix depends on the number of 

nodes and the number of rows depends on the total number of 

edges. The location of items in a row indicates the nodes 

connected to each edge. The value of the item represents the 

length of each edge.  The values in a row are repeated except 

for a minus sign. For example, in row 1, the items are located 

in column 1 and column 2, indicating that edge 1 is between 

nodes x1 and x2 and has length L1.  

 

Each row has two items (which are identical except for the 

sign) even when the number of unknowns is huge (e.g. 

100,000), so the matrix remains extremely sparse as it 

increases in size. As a result, it is best if this matrix is not 

constructed to include all or most of the points. Matrix G can 

be efficiently stored in a compressed row format given its 

sparsity pattern.  

 

To solve for y without generating an explicit (sparse) matrix 

for the gradient operation, we construct the Edge to Node 

[E2N] data structure which holds the connectivity information 

for the mesh. The E2N structure contains the pointer 

information specifying which two nodes define each edge. In 

this sense, the E2N data structure is equivalent to a 

compressed row sparse matrix because both hold the same 

connectivity information. The E2N data structure for the 

problem under consideration is given by: 
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Then, in pseudo-code, the gradient operation can be 

implemented with a single line (and without generating an 

explicit matrix) as: 

 

Equation 1: 

}

  ; e]] x[E2N[2,* 1/Li[e] – y[e]

; e]]x[E2N[1,*1/Li[e]  y[e]  

{ )e num_edges;e 0;(efor 

=

=+

++<=

 

 

In the above operation, indirect memory reads (gather) of 

the type x = a[i] of the node temperatures are performed from 

the dense vectors that hold this information to calculate the 

gradient at each edge. Henceforth, we refer to the gradient 

operation as the “gather operation”.  

 

The second step multiplies the gradient on each edge (‘y’ as 

obtained in the first step) by the conductivity along the edge 

(‘k’), to obtain the flux along each edge. The fluxes associated 

with each edge attached to a node are the summed up to obtain 

temperature unknowns, as shown in Figure 3. 
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Figure 3. The Divergence Operation (Scatter) 

 

This represents the discrete divergence operation and in 

matrix form it is given by: z =Dy 
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Matrix D, like matrix G, is sparse. Every column of D 

contains exactly two items. Matrix D is best stored in the 

compressed column format given its sparsity pattern, or it can 

be directly implemented using the E2N data structure 

discussed earlier. In this case, the E2N data structure can be 

considered equivalent to the compressed column format.  

 

In pseudo-code, the discrete divergence operation can be 

implemented without generating an explicit matrix as: 

 

Equation 2: 

 

} k[e];*y[e]  e]]z[E2N[2,

k[e];*y[e]  e]]z[E2N[1,
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In the above operation, indirect memory writes of the type 

a[i] = x are performed in which the value at each edge is 

“scattered” to the nodes that contain it. Henceforth, we refer to 

the discrete divergence operation as the “scatter operation”.  

 

Forcing column-sparse matrices into a compressed row 

format or row-sparse matrices in the compressed column 

format is unnatural and inefficient. Using the E2N data 

structure, it is possible to store both matrices efficiently. For 

this implementation of SMVM, the sparse matrices are stored 

using the E2N data structure.  

 

 



 

 

IV. PREVIOUS WORK 

 

Several previous research projects have implemented 

SMVM algorithms using FPGAs. de Lormier and DeHon 

developed a multi-FPGA approach which uses matrices 

available in compressed row format [4]. As discussed, some 

sparse matrices are best represented in compressed row 

format, while others are best represented in compressed 

column format. Forceful representation of a matrix in a 

compressed row format might not be efficient. The limited size 

of the source and destination vectors (about 10,000 values) 

allows them to be stored inside FPGA embedded memory. 

This approach is hence not scalable to larger problem sizes. 

This design was also optimized for repeated multiplication by 

the same matrix. Inter-FPGA communication is coordinated at 

compile time and hard-coded into FPGA hardware. Although 

efficient, this approach requires recompilation for every 

matrix. Recompilation is unsuitable for dynamic problems 

where matrices are continually changing.  

 

Zhuo and Prasanna also developed a SMVM approach 

based on FPGAs which uses a matrix represented in 

compressed row format [5]. For this implementation, the entire 

source value vector is again placed in each FPGA. This 

restriction is a limiting factor on problem size and scalability.  

 

A faster implementation was developed by Sun, Peterson 

and Storaasli [6]. They designed an FPGA approach which 

uses a non-conventional data format and takes advantage of a 

specialized accumulator. This approach is again limited to 

small matrices and uses a prescribed (but slightly nonstandard) 

matrix format as well as the assumption of an explicitly-built 

matrix.  

 

Our algorithm differs considerably from these prior designs 

by focusing on improving the memory bandwidth rather than 

improving the performance of the FPGA implementation. 

Previous works have bypassed the memory bottleneck by 

placing matrix data in FPGA memory blocks. This approach is 

convenient for small problems that can conveniently fit in the 

memory blocks. However, for problems with larger data sizes, 

this architectural approach is not scalable. In our approach, the 

data is stored explicitly in on-board memory and accessed by 

the FPGA at DDR2 data rates. This data is stored in multiple 

memory banks and the FPGA’s capability of accessing 

multiple memory banks is used to overcome the memory wall. 

In this scheme, our algorithm is closer to that of El-kurdi, 

Gross, and Giannocopolos, which also focuses on very large 

vectors that cannot reside in FPGA embedded memory [7]. 

The algorithm implemented by DuBois et al. can work on very 

long vectors, but still assumes an explicit matrix is present in a 

prescribed format [8]. Matrix data is stored in external DRAM 

memory. 

V. IMPLEMENTATION PLATFORM 

 

The main criteria used to choose a board for 

experimentation was the presence of off-chip memory, the 

presence of on-chip hardware multipliers and an inter-board 

communication ability. The DE3 boards available from 

Terasic provided these capabilities [9]. Each board contains a 

Stratix III EP3SL150 FPGA with 142,000 logic elements 

(LEs) and 384 18x18-bit multiplier blocks. Each board has a 

single DDR2 SO-DIMM socket with a maximum capacity of 

up to 4GB. Inter-board communication is through a 128-pin 

low voltage differential signaling (LVDS) connector.  

VI. IMPLEMENTATION ALGORITHM 

 

In this SMVM implementation, both scatter and gather 

operations can be performed using the same architecture with 

the same efficiency and without logic reconfiguration. The 

gather and the scatter operations discussed in Section III 

require the arrays shown in Table 1 be stored in external 

memory. The packet structure for scatter and gather operations 

is shown in Table 2. The compute platform can be 

reconfigured for new SMVM operations simply by loading 

new sparse matrix and vector information into the memory 

banks. 

 

These matrices are stored in four banks of the off-chip 

memory. The term ‘banks’ does not imply the presence of 

multiple memory interfaces in this case. These banks cannot be 

accessed in parallel. Only one bank can be accessed at a time, 

through the single memory interface. However, we continue to 

use the bank structure to organize data, as if multiple interfaces 

were available to us. The motivation in using this approach is 

that if multiple memory interfaces were indeed available, this 

data could be accessed in parallel without making any major 

changes to the core. Stratifying the data into banks is also 

TABLE I 

MEMORY MANAGEMENT 

Data Notation Operation 

Edge to node matrix E2N[1/2,e] Gather, Scatter 

Temperature gradient along edge y[e] Gather 

Length of edge Li[e] Gather 

Conductivity along edge k[e] Scatter 

Temperature at each node x[E2N[i,e]] Gather, Scatter 

Sum of fluxes at each node         z[E2N[i,e]] Scatter 

 

TABLE 2 

PACKET STRUCTURE  

Data contained in each packet Gather Scatter 

Multiplier value Li[e]  k[e] 

Source address E2N[1/2,e] &z[e] 

Store/Destination address &y[e] E2N[1/2,e] 

Sign value +/-  + 

Source board information Included in source address 

Store/ Destination board information Included in destination address 

 



 

 

helpful in developing estimates of how the presence of 

multiple banks would improve the performance of the design. 

For a multiple-board implementation, the matrix is 

approximately evenly divided between the external memories 

of the two boards. The gather operation takes place in a series 

of ten steps as discussed below and demonstrated in Figure 4. 

 

 
Figure 4: The Gather Operation 

 

Step 1: The floating point multiplier values (L[e]) are 

sequentially fetched from the memory and stored in a FIFO 

called SEQ0. Because it is a gather operation, the destination 

addresses (for y[e]) are internally generated by the FPGA and 

stored in a FIFO called ADDR (given the fact that y[e] is laid 

out exactly like L[e] since they are the same size). 

 

Step 2: The two integer destination address values (E2N[1,e] 

and E2N[2,e]) are  fetched sequentially from the memory and 

stored in a FIFO called SEQ1. 

 

Step 3: From the data present in SEQ0, SEQ1 and ADDR, 

packets are generated for each source address. These packets 

are stored in a FIFO called PACKET. Each packet contains a 

± multiplier, a destination address, and the source address. 

Both the source and destination addresses contain the board 

identifiers of the target FPGAs. The board containing the 

source address is referred to as the source FPGA and the board 

containing the destination address is referred to as the 

destination FPGA. 

 

Step 4: Each packet is examined by the router to determine if 

it needs to be routed to the source address on a different board 

or if it can remain on the same board. Accordingly, it places 

the packets in FIFOs called NOROUTE0 (for packets that stay 

on the same FPGA) and ROUTE (for packets that need to be 

routed). The router subsystem routes the packets from ROUTE 

to the NOROUTE0 FIFO on the source FPGA. For a gather  

operation this routing is required because the nodes are 

randomly distributed between the FPGAs. For this example, 

assume that the packet is routed to FPGA-2. 

Step 5: On the source board, the source value (x[E2N[i,e]]) is 

then fetched from the FPGA read memory bank and replaces 

the source address in the data packet, which is now stored in a 

FIFO called SOURCE. All memory reads are directed through 

a single FIFO called RAND. If multiple memory reads are 

requested through the single interface at the same time, priority 

can be given to packets from the same FIFO. This approach 

improves DDR controller efficiency by preventing the 

controller from swapping between writes and reads to different 

rows, forcing a row to be opened and closed on every 

transaction. 

 

Step 6: The compute element in the source value FPGA 

multiplies L[e] and x[E2N[i,e]], replaces L[e], discards 

x[E2N[i,e]] and stores the packet in a FIFO called MULT.  

 

Step 7: The router decides if the packet should be routed to 

another FPGA (puts packet in ROUTE FIFO) or will remain 

on the same FPGA (puts packet in NOROUTE1 FIFO). The 

result, L[e]*x[E2N[i,e]], is routed to the destination FPGA’s 

NOROUTE1 FIFO. In this example, the packet is routed back 

to FPGA-1.  

 

Step 8: The destination value y[e] is fetched from the memory 

through RAND and the packet is stored in DEST FIFO.  

 

Step 9: The product from Step 6 is added to or subtracted 

from the destination value y[e] using the adder on the 

destination FPGA. The destination data is discarded and the 

packet is stored in ACCUM FIFO. Depending on the matrix-

based application, this operation could also be a subtract, max, 

or min function. However, the specified operation is the same 

for all packets traveling through the system. 

 

Step 10: The accumulated value is written to the appropriate 

memory bank on the FPGA using the destination address. 

 

The scatter operation operates in exactly the same way as 

the gather except that the locations of the source and the 

destination addresses are interchanged while constructing the 

packets in Step 3. Accordingly, the packet does not need to be 

routed in Step 4, because the memory bank with the source 

value is attached to the same FPGA as the one with the 

multiplier values. The packet goes through the router sub-

system in any case to maintain a common architecture for the 

gather and scatter operations. Whether an operation is a gather 

or a scatter is indicated by the presence of a slide switch on the 

board. When the switch is in the “ON” position, the operation 

is a gather, and when the switch is in the “OFF” position the 

operation is a scatter. The location of the source and the 

destination addresses in the packets in Step 3 is the only 

information determined by the position of the switch. After 

this location is determined, it is not necessary to differentiate 

between a scatter and gather operation.  

 



 

 

The Router Subsystem: 

 

Each FPGA in the system has a board identifier hard-coded 

into its RTL core. The FPGAs are connected to each other 

over a 128-bit bi-directional High Speed Terasic Connector 

(HSTC) channel. Since there is a single 128-bit channel 

present to route the packets from any FPGA to any other 

FPGA in the system, a bus arbitration mechanism is required. 

For this purpose, a single board is designated as the bus 

controller, and the other board is designated as a slave. A 

single slide switch indicates whether a board is a master or a 

slave. If the slide switch is in the ON position, the board is the 

master. There can be only one master board in the system. The 

master board receives and processes all routing requests 

according to a rotating priority mechanism.  

 

On each board, the router sorts and routes packets over the 

HSTC interface that connects all the boards in the system. The 

router compares the board address present in the source (or the 

destination) address of each packet with the board identifier of 

the board the where the packet is present. If the packet is 

already present on the correct board, it is not routed, but is 

instead written to the appropriate FIFO for random access to 

the memory module attached to the board. If the comparison 

fails, the packet needs to be routed to a different board and the 

routing operation is initiated.  

 

Each packet is assigned a single-bit header that indicates 

whether it is being routed to the source address or the 

destination address. Once the packet reaches the destination 

board, this information is used to determine whether the 

requested data is from the source or the destination address of 

the packet.   

 

The interface between the master and the slave consists of 

the following signals: 

1. A 114 bit bi-directional data bus (packet size) 

2. A “Busy” signal driven by the master 

3. Dedicated bus request signals between the master and 

each slave (1 in this case) 

4. Dedicated bus grant signals between the master and 

each slave (1 in this case) 

 

If the board that requires a route is a slave, the following set 

of events takes place: 

1. The slave requests the master to release the bus using 

the dedicated bus request line between them.  

2. If the bus is not busy, the master does the following: 

• Stops driving the data bus 

• Drives the dedicated bus grant signal high 

• Drives the busy signal high 

• When the slave receives the bus grant signal, it starts 

driving the data bus to transfer packets. 

3. If the bus is busy, the master waits for the current 

transfer to complete and then assigns the bus to the 

slave. If there are other requests present, the master 

uses a rotating priority scheme to assign the bus. 

 

The slave now drives the data bus, sending packet 

information across the bus along with the destination board ID. 

The slave will maintain the bus request signal high for as long 

as it requires data transfer. This data is sent to all the boards in 

the system, but only the board with the correct board ID 

processes this information. Once the slave has transferred all 

the packets, it releases the data bus and drives the bus request 

signal low. The master takes control of the bus, drives the busy 

signal low and processes the next request, if any. 

 

If the board requiring a route is the master, the following set 

of events takes place: 

• If the busy signal is driven low and no other bus requests 

are available, the master drives the busy signal high and 

broadcasts the destination board ID and the packet 

information.  

• If the busy signal is driven high, a transfer in progress is 

indicated. The master will send the packets across once that 

transfer is complete. 
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Figure 5: Existing Parallelization 

 

Note on Parallelization: 

 

The sequential read operations in Steps 1 and 2 are 

performed by the DDR controller for only 2% of total time that 

the DDR is busy. Similarly, the write operation in Step 10 

occupies only 10% of the DDR time, while 88% of the time is 

spent doing the random reads from the source and the 

destination addresses. 

 

The operations that require memory access are constrained 

by the presence of a single memory interface per FPGA. They 

must be performed sequentially, as demonstrated in Figure 5. 

If three memory interfaces were present, then it would be 

possible to parallelize the steps as summarized in Figure 6. In 

this figure, for simplicity of representation, the random read 

operations are performed using Interface 2 and Interface 3 

only. 

 



 

 

   

 
 

Figure 6: Potential Parallelization 

 

Realistically, it would be possible to perform random reads 

from all three interfaces, interleaving random reads and writes 

in Interface 1. Since the random read memory access latency is 

the largest, dividing the random reads between three interfaces 

would decrease the computation time to about 33% of the time 

taken with a single interface.  

VII. RESULTS 

 

FPGA-based experiments were conducted for three matrix 

sizes: 

1. 11k nodes and 34k edges 

2. 128k nodes and 383k edges 

3. 237k nodes and 710k edges 

The experiments were performed on a single FPGA board, 

two FPGA boards and a 2.8 GHz CPU-based workstation. For 

both the CPU and the FPGAs, the matrices were pre-loaded 

into the DRAM, either a gather or a scatter operation was 

performed and the time taken to perform the operations was 

recorded. Finally, the results were read back from the DRAM 

on the FPGA board and checked for correctness with results 

obtained using the microprocessor.  

 
TABLE 3 

PERFORMANCE RESULTS 

Calculation Time (msec) 
Floating Point 

Performance (MFlops) Matrix Size 

Nodes Edges 

1 

Board 

2 

Board 
CPU 

1 

Board 

2 

Board 
CPU 

11k 34k 11.5 5.8  11.82 23.44  

128k 383k 125 65  12.26 23.56  

237k 710k 228 118 ~15 12.45 24.06 ~190 

  

The run times on a single board, two boards and for a CPU 

implementation for the three matrix sizes are indicated in 

Table 3. It was found that the FPGA system run times 

increased linearly with increases in matrix sizes but the 

floating point performance remained constant. The run time 

for a two-board implementation was approximately half that of 

a single-board implementation, indicating little routing 

overhead. Up to four reads/writes were buffered at a time by 

the DDR controller. The DDR interface was busy for 90% of 

the run time, including time spent waiting for the read data to 

appear on the data bus. A total of 88% of the time was spent 

doing random reads, 10% of the time was spent doing random 

writes and only 2% of the time was spent doing sequential 

reads. A total of 70 of the 384 hardware multipliers were used 

(18%) to perform DPFP multiplication and 0.5MB of on-chip 

memory was used of the available 0.68 MB (76%). Out of the 

0.5 MB block memory utilized in the design, 0.25MB was 

used to load the matrices into the DRAM through a USB Byte 

Blaster and the remaining memory was used by various FIFOs 

implemented in the design. 

 

The CPU was found to be 8 times faster than the two board 

implementation for the largest matrix size. Each board 

operates at a frequency of 133 MHz, and the AMD Phenom 

X4 processor operates about 21 times faster at a frequency of 

2.8 GHz. If four memory interfaces were available on each 

board, then the performance of the FPGA system would be 

twice as slow as the microprocessor. If four boards with four 

memory interfaces were present, the performance of the FPGA 

would be on par with the microprocessor, assuming that the 

routing overhead remains constant. Larger FPGA systems 

would lead to a performance benefit, especially if the DRAM 

interfaces were optimized for the application. 

VIII. FUTURE WORK 

 

Future work includes performing similar experiments on 

more boards with more DRAM interfaces. The design could 

also use an SRAM-based cache that is implemented on the 

hardware resources not being used by FIFOs and floating point 

units. Further optimization of the DRAM interface controller 

would also be desirable. 
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