

 Abstract—Cache-based, general purpose CPUs perform at a

small fraction of their maximum floating point performance when

executing memory-intensive simulations, such as those required

for sparse matrix-vector multiplication. This effect is due to the

memory bottleneck that is encountered with large arrays that

must be stored in dynamic RAM. An FPGA core designed for a

target performance that does not unnecessarily exceed the

memory imposed bottleneck can be distributed, along with

multiple memory interfaces, into a scalable architecture that

overcomes the bandwidth limitation of a single interface.

Interconnected cores can work together to solve a computing

problem and exploit a bandwidth that is the sum of the

bandwidth available from all of their connected memory

interfaces. This work demonstrates this concept of scalability with

two memory interfaces through the use of an available FPGA

prototyping platform. It is shown that our reconfigurable

approach is scalable as performance roughly doubles when two

FPGAs are used for computation instead of one.

Index Terms—FPGA, Sparse matrix-vector multiply

I. INTRODUCTION

parse matrix-vector multiply (SMVM) computations

perform poorly on cache-based CPUs because they are

highly memory intensive, have large sizes and require frequent

data updates. As an example, we consider sparse matrices that

arise from the finite element analysis used in several

disciplines to find approximate solutions to boundary value

problems. Sparse matrix-vector multiplication involves

iteratively multiplying a sparse matrix with a dense vector that

changes on every iteration. This is a stream-based computation

that lacks temporal locality and restricts the performance

advantage that a cache-based CPU would have as a result of

repetitive data use.

As cache hits in SMVM are rare, the speed of the algorithm

is entirely dictated by the sequential and random memory

access bandwidth. This “memory bottleneck” causes

processors to run at a small fraction of their peak floating point

rate for scientific computations resulting in a performance of

MFlops as opposed to GFlops. The floating point performance

is observed to drop down to as low as 2.7% of the peak value

of the CPU. An approach to overcome this memory wall by

using a system of FPGAs with external memory banks as a

math co-processor is implemented. The FPGA-based system is

demonstrated to be scalable; the memory bandwidth of the

FPGAs and hence the floating point performance of the

FPGA-based implementation can be linearly increased by

increasing the number of FPGAs or the memory interfaces per

board.

Section II explains the motivation for implementing the

SMVM problem on a system of FPGAs. The floating point

performance for scientific computations is non-contingent on

the clock frequency [1]. The use of multiple cores is

complicated because concurrent techniques other than multi-

threading must be used by the programmer [2]. Increases in

processor clock speed and in the number of cores per

processor are current microprocessor industry trends. For

sparse matrix-vector multiply these improvements are

unhelpful because they do not address the memory bottleneck.

Section III gives an overview of the SMVM problem that

arises in an iterative simulation of two-dimensional heat

transfer. The differences between the sparsity patterns of the

sparse matrix for this problem are highlighted and an alternate

data structure that can store a sparse row and a sparse column

matrix with equal efficiency is explained.

Section IV looks into previous work for similar problems

that use approaches that are different than ours. Matrices

undergoing computation are stored in formats that are either

efficient for a sparse row format or a sparse column format,

but not both. The problem size constraints which arise due to

limited on-chip memory storage of sparse matrices and dense

vectors are explained.

Section V details our choice of FPGA board for this

implementation. Candidate boards are required to have dense

off-chip memory modules and inter-board communication

abilities.

In Section VI we detail the implementation algorithm for

SMVM on multiple boards. In our approach, operands,

operators and memory addresses that include board address

information are organized into packets to distribute

computations between FPGAs. A system of FIFOs is used to

implement a streaming paradigm on these packets, where data

is fetched from DRAM memory if FIFOs are non-empty. Data

values stored in a FIFO is subsequently processed. Based on a

fetch or write memory address, data packets are routed to a

destination FPGA by a router sub-system. The implementation

Reconfigurable Sparse Matrix-Vector

Multiplication on FPGAs
 Salma Mirza and Russell Tessier J. Blair Perot

Dept. of Electrical and Computer Engineering Dept. of Mechanical and Industrial Engineering

University of Massachusetts University of Massachusetts

 Amherst, MA 01003 Amherst, MA 01003

S

algorithm is exactly the same for a gather or a scatter

operation, and hence, the efficiency of either operation

remains the same. The size of a matrix is limited by the size of

the external memory. For bigger matrices, this architecture can

be scaled by using more FPGAs or bigger memory modules.

Section VII contains the results and some conclusions for

this work. A single board implementation performs at 12

MFlops. A two-board implementation performs at 24 MFlops,

indicating that our system is scalable. Section VIII highlights

planned future work.

II. MOTIVATION

 Simulations allow scientists to quantitatively predict results

of real-life phenomena for a range of input conditions and with

a programmable degree of accuracy. In many cases,

simulations are preferred to physical experiments because they

are often cheaper, faster and less dangerous than these types of

experiments. For a reasonably good mathematical model, the

accuracy of the simulations is given by how closely a

simulation setup can imitate a physical experimental setup. To

increase accuracy, the problem must be made larger. This

translates to an increase in the number of computations, which

in turn is constrained by the available computing resources and

their efficiency.

Low-cost commodity computers are most often used in

clusters for scientific simulations. Commodity computers

utilize a cache-based architecture which is ill-suited for

streaming applications. SMVM performs poorly on cache-

based CPUs because of the vast and constantly changing data

associated with iterative simulations. The data set is usually

too large to fit in the CPU cache and exhibits little temporal

locality, making cache hits rare. The speed of computation is

limited by memory access times that, typically, are at least ten

times slower than the time taken to perform an operation on

the CPU. This problem is particularly apparent in the DAXPY

(double precision y = ax + y) operation.

Figure 1: Discretization of a PDE over a triangular mesh

The construction and storage of a sparse matrix prior to

computation is difficult, expensive and unnecessary. If

constructed at all, the sparse matrix should be stored in an

alternate representation, either a compressed row or

compressed column representation, whichever may be more

appropriate for the matrix at hand [3]. Computer codes that

actually build matrices slow down the simulations because of

the memory access times involved. This issue ultimately

restricts the accuracy at which the simulations can be

performed in a constrained time period.

III. BACKGROUND

Consider the problem of two-dimensional heat transfer on

an unstructured mesh, as shown in Figure 1. To discretize the

partial differential equations associated with this problem, the

mesh is divided into smaller domains. In practice, the mesh

may consist of 100,000 sub-domains for a 2-D problem, and a

million tetrahedras for a 3-D problem. Dividing the mesh into

smaller sub-domains results in a more accurate solution, but

also involves more data and intensified computation. For the

purpose of simplification, we consider a triangle that is a part

of a larger mesh, as shown in Figure 1. The temperature

unknowns are located at the four vertices and are calculated

iteratively in two steps. The temperature gradient along the

edges is calculated as the first step. Roughly, this value is the

difference in temperature at the vertices that connect an edge

divided by the length of the edge as shown in Figure 2.








 −
=

1L

2x1x

1k 1y










 −
=

5L

4x1x

5k 5y










 −
=

3L

3x1x

3k 3y

Figure 2: The Gradient Operation (Gather)

This is a gradient operation and in matrix form, it is

represented by y = Gx























































−

−

−

−

−

=





















4x
3x
2x
1x

L

1
00

L

1

L

1

L

1
00

0
L

1
0

L

1

0
L

1

L

1
0

00
L

1

L

1

4y
3y
2y
1y

55

44

33

22

11

The matrix G is a sparse matrix. Every row of G contains

exactly two non-zero items. For simplicity, we refer to non-

zero values as items. In relation to the problem at hand, the

number of columns in the matrix depends on the number of

nodes and the number of rows depends on the total number of

edges. The location of items in a row indicates the nodes

connected to each edge. The value of the item represents the

length of each edge. The values in a row are repeated except

for a minus sign. For example, in row 1, the items are located

in column 1 and column 2, indicating that edge 1 is between

nodes x1 and x2 and has length L1.

Each row has two items (which are identical except for the

sign) even when the number of unknowns is huge (e.g.

100,000), so the matrix remains extremely sparse as it

increases in size. As a result, it is best if this matrix is not

constructed to include all or most of the points. Matrix G can

be efficiently stored in a compressed row format given its

sparsity pattern.

To solve for y without generating an explicit (sparse) matrix

for the gradient operation, we construct the Edge to Node

[E2N] data structure which holds the connectivity information

for the mesh. The E2N structure contains the pointer

information specifying which two nodes define each edge. In

this sense, the E2N data structure is equivalent to a

compressed row sparse matrix because both hold the same

connectivity information. The E2N data structure for the

problem under consideration is given by:









=

44332

13121

xxxxx

xxxxx
E2N

Then, in pseudo-code, the gradient operation can be

implemented with a single line (and without generating an

explicit matrix) as:

Equation 1:

}

 ; e]] x[E2N[2,* 1/Li[e] – y[e]

; e]]x[E2N[1,*1/Li[e] y[e]

{)e num_edges;e 0;(efor

=

=+

++<=

In the above operation, indirect memory reads (gather) of

the type x = a[i] of the node temperatures are performed from

the dense vectors that hold this information to calculate the

gradient at each edge. Henceforth, we refer to the gradient

operation as the “gather operation”.

The second step multiplies the gradient on each edge (‘y’ as

obtained in the first step) by the conductivity along the edge

(‘k’), to obtain the flux along each edge. The fluxes associated

with each edge attached to a node are the summed up to obtain

temperature unknowns, as shown in Figure 3.

L5

L1

L3

L4

L2

x1

x2

x3x4

1
*k
1
y

5
*k
5
y

3*k3y

5
*k
5
y

3
*k
3
y

1
*k
1
y ++

Figure 3. The Divergence Operation (Scatter)

This represents the discrete divergence operation and in

matrix form it is given by: z =Dy







































































=

5y
4y
3y
2y
1y

5k-4k-000

04k3k-2k-0

0002k1k-
5k03k01k

4z
3z
2z
1z

.

Matrix D, like matrix G, is sparse. Every column of D

contains exactly two items. Matrix D is best stored in the

compressed column format given its sparsity pattern, or it can

be directly implemented using the E2N data structure

discussed earlier. In this case, the E2N data structure can be

considered equivalent to the compressed column format.

In pseudo-code, the discrete divergence operation can be

implemented without generating an explicit matrix as:

Equation 2:

} k[e];*y[e] e]]z[E2N[2,

k[e];*y[e] e]]z[E2N[1,

{)e num_edges;e 0;(efor

0; z

=−

=+

++<=

=

In the above operation, indirect memory writes of the type

a[i] = x are performed in which the value at each edge is

“scattered” to the nodes that contain it. Henceforth, we refer to

the discrete divergence operation as the “scatter operation”.

Forcing column-sparse matrices into a compressed row

format or row-sparse matrices in the compressed column

format is unnatural and inefficient. Using the E2N data

structure, it is possible to store both matrices efficiently. For

this implementation of SMVM, the sparse matrices are stored

using the E2N data structure.

IV. PREVIOUS WORK

Several previous research projects have implemented

SMVM algorithms using FPGAs. de Lormier and DeHon

developed a multi-FPGA approach which uses matrices

available in compressed row format [4]. As discussed, some

sparse matrices are best represented in compressed row

format, while others are best represented in compressed

column format. Forceful representation of a matrix in a

compressed row format might not be efficient. The limited size

of the source and destination vectors (about 10,000 values)

allows them to be stored inside FPGA embedded memory.

This approach is hence not scalable to larger problem sizes.

This design was also optimized for repeated multiplication by

the same matrix. Inter-FPGA communication is coordinated at

compile time and hard-coded into FPGA hardware. Although

efficient, this approach requires recompilation for every

matrix. Recompilation is unsuitable for dynamic problems

where matrices are continually changing.

Zhuo and Prasanna also developed a SMVM approach

based on FPGAs which uses a matrix represented in

compressed row format [5]. For this implementation, the entire

source value vector is again placed in each FPGA. This

restriction is a limiting factor on problem size and scalability.

A faster implementation was developed by Sun, Peterson

and Storaasli [6]. They designed an FPGA approach which

uses a non-conventional data format and takes advantage of a

specialized accumulator. This approach is again limited to

small matrices and uses a prescribed (but slightly nonstandard)

matrix format as well as the assumption of an explicitly-built

matrix.

Our algorithm differs considerably from these prior designs

by focusing on improving the memory bandwidth rather than

improving the performance of the FPGA implementation.

Previous works have bypassed the memory bottleneck by

placing matrix data in FPGA memory blocks. This approach is

convenient for small problems that can conveniently fit in the

memory blocks. However, for problems with larger data sizes,

this architectural approach is not scalable. In our approach, the

data is stored explicitly in on-board memory and accessed by

the FPGA at DDR2 data rates. This data is stored in multiple

memory banks and the FPGA’s capability of accessing

multiple memory banks is used to overcome the memory wall.

In this scheme, our algorithm is closer to that of El-kurdi,

Gross, and Giannocopolos, which also focuses on very large

vectors that cannot reside in FPGA embedded memory [7].

The algorithm implemented by DuBois et al. can work on very

long vectors, but still assumes an explicit matrix is present in a

prescribed format [8]. Matrix data is stored in external DRAM

memory.

V. IMPLEMENTATION PLATFORM

The main criteria used to choose a board for

experimentation was the presence of off-chip memory, the

presence of on-chip hardware multipliers and an inter-board

communication ability. The DE3 boards available from

Terasic provided these capabilities [9]. Each board contains a

Stratix III EP3SL150 FPGA with 142,000 logic elements

(LEs) and 384 18x18-bit multiplier blocks. Each board has a

single DDR2 SO-DIMM socket with a maximum capacity of

up to 4GB. Inter-board communication is through a 128-pin

low voltage differential signaling (LVDS) connector.

VI. IMPLEMENTATION ALGORITHM

In this SMVM implementation, both scatter and gather

operations can be performed using the same architecture with

the same efficiency and without logic reconfiguration. The

gather and the scatter operations discussed in Section III

require the arrays shown in Table 1 be stored in external

memory. The packet structure for scatter and gather operations

is shown in Table 2. The compute platform can be

reconfigured for new SMVM operations simply by loading

new sparse matrix and vector information into the memory

banks.

These matrices are stored in four banks of the off-chip

memory. The term ‘banks’ does not imply the presence of

multiple memory interfaces in this case. These banks cannot be

accessed in parallel. Only one bank can be accessed at a time,

through the single memory interface. However, we continue to

use the bank structure to organize data, as if multiple interfaces

were available to us. The motivation in using this approach is

that if multiple memory interfaces were indeed available, this

data could be accessed in parallel without making any major

changes to the core. Stratifying the data into banks is also

TABLE I

MEMORY MANAGEMENT

Data Notation Operation

Edge to node matrix E2N[1/2,e] Gather, Scatter

Temperature gradient along edge y[e] Gather

Length of edge Li[e] Gather

Conductivity along edge k[e] Scatter

Temperature at each node x[E2N[i,e]] Gather, Scatter

Sum of fluxes at each node z[E2N[i,e]] Scatter

TABLE 2

PACKET STRUCTURE

Data contained in each packet Gather Scatter

Multiplier value Li[e] k[e]

Source address E2N[1/2,e] &z[e]

Store/Destination address &y[e] E2N[1/2,e]

Sign value +/- +

Source board information Included in source address

Store/ Destination board information Included in destination address

helpful in developing estimates of how the presence of

multiple banks would improve the performance of the design.

For a multiple-board implementation, the matrix is

approximately evenly divided between the external memories

of the two boards. The gather operation takes place in a series

of ten steps as discussed below and demonstrated in Figure 4.

Figure 4: The Gather Operation

Step 1: The floating point multiplier values (L[e]) are

sequentially fetched from the memory and stored in a FIFO

called SEQ0. Because it is a gather operation, the destination

addresses (for y[e]) are internally generated by the FPGA and

stored in a FIFO called ADDR (given the fact that y[e] is laid

out exactly like L[e] since they are the same size).

Step 2: The two integer destination address values (E2N[1,e]

and E2N[2,e]) are fetched sequentially from the memory and

stored in a FIFO called SEQ1.

Step 3: From the data present in SEQ0, SEQ1 and ADDR,

packets are generated for each source address. These packets

are stored in a FIFO called PACKET. Each packet contains a

± multiplier, a destination address, and the source address.

Both the source and destination addresses contain the board

identifiers of the target FPGAs. The board containing the

source address is referred to as the source FPGA and the board

containing the destination address is referred to as the

destination FPGA.

Step 4: Each packet is examined by the router to determine if

it needs to be routed to the source address on a different board

or if it can remain on the same board. Accordingly, it places

the packets in FIFOs called NOROUTE0 (for packets that stay

on the same FPGA) and ROUTE (for packets that need to be

routed). The router subsystem routes the packets from ROUTE

to the NOROUTE0 FIFO on the source FPGA. For a gather

operation this routing is required because the nodes are

randomly distributed between the FPGAs. For this example,

assume that the packet is routed to FPGA-2.

Step 5: On the source board, the source value (x[E2N[i,e]]) is

then fetched from the FPGA read memory bank and replaces

the source address in the data packet, which is now stored in a

FIFO called SOURCE. All memory reads are directed through

a single FIFO called RAND. If multiple memory reads are

requested through the single interface at the same time, priority

can be given to packets from the same FIFO. This approach

improves DDR controller efficiency by preventing the

controller from swapping between writes and reads to different

rows, forcing a row to be opened and closed on every

transaction.

Step 6: The compute element in the source value FPGA

multiplies L[e] and x[E2N[i,e]], replaces L[e], discards

x[E2N[i,e]] and stores the packet in a FIFO called MULT.

Step 7: The router decides if the packet should be routed to

another FPGA (puts packet in ROUTE FIFO) or will remain

on the same FPGA (puts packet in NOROUTE1 FIFO). The

result, L[e]*x[E2N[i,e]], is routed to the destination FPGA’s

NOROUTE1 FIFO. In this example, the packet is routed back

to FPGA-1.

Step 8: The destination value y[e] is fetched from the memory

through RAND and the packet is stored in DEST FIFO.

Step 9: The product from Step 6 is added to or subtracted

from the destination value y[e] using the adder on the

destination FPGA. The destination data is discarded and the

packet is stored in ACCUM FIFO. Depending on the matrix-

based application, this operation could also be a subtract, max,

or min function. However, the specified operation is the same

for all packets traveling through the system.

Step 10: The accumulated value is written to the appropriate

memory bank on the FPGA using the destination address.

The scatter operation operates in exactly the same way as

the gather except that the locations of the source and the

destination addresses are interchanged while constructing the

packets in Step 3. Accordingly, the packet does not need to be

routed in Step 4, because the memory bank with the source

value is attached to the same FPGA as the one with the

multiplier values. The packet goes through the router sub-

system in any case to maintain a common architecture for the

gather and scatter operations. Whether an operation is a gather

or a scatter is indicated by the presence of a slide switch on the

board. When the switch is in the “ON” position, the operation

is a gather, and when the switch is in the “OFF” position the

operation is a scatter. The location of the source and the

destination addresses in the packets in Step 3 is the only

information determined by the position of the switch. After

this location is determined, it is not necessary to differentiate

between a scatter and gather operation.

The Router Subsystem:

Each FPGA in the system has a board identifier hard-coded

into its RTL core. The FPGAs are connected to each other

over a 128-bit bi-directional High Speed Terasic Connector

(HSTC) channel. Since there is a single 128-bit channel

present to route the packets from any FPGA to any other

FPGA in the system, a bus arbitration mechanism is required.

For this purpose, a single board is designated as the bus

controller, and the other board is designated as a slave. A

single slide switch indicates whether a board is a master or a

slave. If the slide switch is in the ON position, the board is the

master. There can be only one master board in the system. The

master board receives and processes all routing requests

according to a rotating priority mechanism.

On each board, the router sorts and routes packets over the

HSTC interface that connects all the boards in the system. The

router compares the board address present in the source (or the

destination) address of each packet with the board identifier of

the board the where the packet is present. If the packet is

already present on the correct board, it is not routed, but is

instead written to the appropriate FIFO for random access to

the memory module attached to the board. If the comparison

fails, the packet needs to be routed to a different board and the

routing operation is initiated.

Each packet is assigned a single-bit header that indicates

whether it is being routed to the source address or the

destination address. Once the packet reaches the destination

board, this information is used to determine whether the

requested data is from the source or the destination address of

the packet.

The interface between the master and the slave consists of

the following signals:

1. A 114 bit bi-directional data bus (packet size)

2. A “Busy” signal driven by the master

3. Dedicated bus request signals between the master and

each slave (1 in this case)

4. Dedicated bus grant signals between the master and

each slave (1 in this case)

If the board that requires a route is a slave, the following set

of events takes place:

1. The slave requests the master to release the bus using

the dedicated bus request line between them.

2. If the bus is not busy, the master does the following:

• Stops driving the data bus

• Drives the dedicated bus grant signal high

• Drives the busy signal high

• When the slave receives the bus grant signal, it starts

driving the data bus to transfer packets.

3. If the bus is busy, the master waits for the current

transfer to complete and then assigns the bus to the

slave. If there are other requests present, the master

uses a rotating priority scheme to assign the bus.

The slave now drives the data bus, sending packet

information across the bus along with the destination board ID.

The slave will maintain the bus request signal high for as long

as it requires data transfer. This data is sent to all the boards in

the system, but only the board with the correct board ID

processes this information. Once the slave has transferred all

the packets, it releases the data bus and drives the bus request

signal low. The master takes control of the bus, drives the busy

signal low and processes the next request, if any.

If the board requiring a route is the master, the following set

of events takes place:

• If the busy signal is driven low and no other bus requests

are available, the master drives the busy signal high and

broadcasts the destination board ID and the packet

information.

• If the busy signal is driven high, a transfer in progress is

indicated. The master will send the packets across once that

transfer is complete.

STEP 1

(Sequential Read)

STEP 2

(Sequential Read)

STEP 3

(Packet Creation)

STEP 4

(Route)

STEP 5 (Read

from Source)

STEP 6

(Multiply)

STEP 7

(Route)

STEP 8 (Read

from Destination)

STEP 9

(Accumulate)

STEP 10 (Write to

Destination)

Memory Operations

Non Memory Operations

Figure 5: Existing Parallelization

Note on Parallelization:

The sequential read operations in Steps 1 and 2 are

performed by the DDR controller for only 2% of total time that

the DDR is busy. Similarly, the write operation in Step 10

occupies only 10% of the DDR time, while 88% of the time is

spent doing the random reads from the source and the

destination addresses.

The operations that require memory access are constrained

by the presence of a single memory interface per FPGA. They

must be performed sequentially, as demonstrated in Figure 5.

If three memory interfaces were present, then it would be

possible to parallelize the steps as summarized in Figure 6. In

this figure, for simplicity of representation, the random read

operations are performed using Interface 2 and Interface 3

only.

Figure 6: Potential Parallelization

Realistically, it would be possible to perform random reads

from all three interfaces, interleaving random reads and writes

in Interface 1. Since the random read memory access latency is

the largest, dividing the random reads between three interfaces

would decrease the computation time to about 33% of the time

taken with a single interface.

VII. RESULTS

FPGA-based experiments were conducted for three matrix

sizes:

1. 11k nodes and 34k edges

2. 128k nodes and 383k edges

3. 237k nodes and 710k edges

The experiments were performed on a single FPGA board,

two FPGA boards and a 2.8 GHz CPU-based workstation. For

both the CPU and the FPGAs, the matrices were pre-loaded

into the DRAM, either a gather or a scatter operation was

performed and the time taken to perform the operations was

recorded. Finally, the results were read back from the DRAM

on the FPGA board and checked for correctness with results

obtained using the microprocessor.

TABLE 3

PERFORMANCE RESULTS

Calculation Time (msec)
Floating Point

Performance (MFlops) Matrix Size

Nodes Edges

1

Board

2

Board
CPU

1

Board

2

Board
CPU

11k 34k 11.5 5.8 11.82 23.44

128k 383k 125 65 12.26 23.56

237k 710k 228 118 ~15 12.45 24.06 ~190

The run times on a single board, two boards and for a CPU

implementation for the three matrix sizes are indicated in

Table 3. It was found that the FPGA system run times

increased linearly with increases in matrix sizes but the

floating point performance remained constant. The run time

for a two-board implementation was approximately half that of

a single-board implementation, indicating little routing

overhead. Up to four reads/writes were buffered at a time by

the DDR controller. The DDR interface was busy for 90% of

the run time, including time spent waiting for the read data to

appear on the data bus. A total of 88% of the time was spent

doing random reads, 10% of the time was spent doing random

writes and only 2% of the time was spent doing sequential

reads. A total of 70 of the 384 hardware multipliers were used

(18%) to perform DPFP multiplication and 0.5MB of on-chip

memory was used of the available 0.68 MB (76%). Out of the

0.5 MB block memory utilized in the design, 0.25MB was

used to load the matrices into the DRAM through a USB Byte

Blaster and the remaining memory was used by various FIFOs

implemented in the design.

The CPU was found to be 8 times faster than the two board

implementation for the largest matrix size. Each board

operates at a frequency of 133 MHz, and the AMD Phenom

X4 processor operates about 21 times faster at a frequency of

2.8 GHz. If four memory interfaces were available on each

board, then the performance of the FPGA system would be

twice as slow as the microprocessor. If four boards with four

memory interfaces were present, the performance of the FPGA

would be on par with the microprocessor, assuming that the

routing overhead remains constant. Larger FPGA systems

would lead to a performance benefit, especially if the DRAM

interfaces were optimized for the application.

VIII. FUTURE WORK

Future work includes performing similar experiments on

more boards with more DRAM interfaces. The design could

also use an SRAM-based cache that is implemented on the

hardware resources not being used by FIFOs and floating point

units. Further optimization of the DRAM interface controller

would also be desirable.

REFERENCES

[1] R. Murphy, "On the Effects of Memory Latency and Bandwidth on

Supercomputer Application Performance," IEEE International

Symposium on Workload Characterization, pp. 35-43, 2007

[2] E. A. Lee, "The Problem with Threads," Computer, vol. 39, no. 5, pp.

33-42, May 2006,

[3] Y. Saad, “Iterative Methods for Sparse Linear Systems,” Society for

Industrial and Applied Mathematics, 2003.

[4] M. deLorimier and A. DeHon, “Floating-point Sparse Matrix-vector

Multiply for FPGAs,” ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 75–85, 2005.

[5] L. Zhou and V. Prasanna, “Sparse Matrix-Vector Multiplication on

FPGAs.” ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 63-74. 2005

[6] J. Sun, G. Peterson and O. Storaasli, “Sparse Matrix-Vector

Multiplication Design on FPGAs,” IEEE International Symposium on

Field-Programmable Custom Computing Machines, pp. 349-352, 2007

[7] Y. El-Kurdi, D. Fernández, E. Souleimanov, D. Giannacopoulos, W. J.

Gross, “FPGA architecture and implementation of sparse matrix-vector

multiplication for the finite element method,” Computer Physics

Communications vol. 178, no. 8, pp. 558-570, 2008

[8] D. Dubois, A. Dubois, C. Connor, S. Poole, "Sparse Matrix-Vector

Multiplication on a Reconfigurable Supercomputer," IEEE Symposium

on Field-Programmable Custom Computing Machines, pp. 349-357,

2008.

[9] Altera DE3 Board User’s Manual, Altera Corporation, 2009.

