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ABSTRACT

A new type of turbulence model has recently been proposed which involves transport
equations for the scalar and vector potentials of the turbulent body force (the divergence of the
Reynolds stress tensor). Theoretical analysis of this turbulent potential model suggests that
the predictive accuracy of Reynolds stress transport equation models might be obtained at a
cost comparable to state-of-the-art two-equation turbulence models. Initial tests of the model
showed promising results for simple turbulent flows such as channel flow at various Reynolds
numbers, boundary layers, mixing layers, rotating channel flow, and even transition. In order
to understand the model’s behavior in more complex flow situations it is now tested on a
number of more complex flows involving flow separation, reattachment and stagnation.
Model predictions for two adverse pressure-gradient boundary layers are presented, one mild
and one on the verge of separation. In addition, predictions for the backward facing step and a
turbulent impinging jet are presented.

1. INTRODUCTION

Reynolds Averaged Navier-Stokes (RANS) turbulence models are usually concerned with
modeling the Reynolds stress tensor. An alternative approach to RANS turbulence modeling
has been proposed'* where the primary modeled quantities are the scalar and vector potentials
of the turbulent body force - the divergence of the Reynolds stress tensor. This approach has
been found to have a number of attractive properties, most important of which is the ability to
model non-equilibrium turbulence situations accurately at a cost and complexity comparable

to the widely used two-equation models such as k-¢.

Like Reynolds stress transport equation models, the proposed model does not require a
hypothesized constitutive relation between the turbulence and the mean flow variables. This
allows non-equilibrium turbulence to modeled effectively. However, unlike Reynolds stress
transport equation models, the proposed system of partial differential equations is much
simpler to model and compute. It involves roughly half the number of variables, no
realizability conditions, and removes the strong coupling between the equations. A analysis of
the turbulent body force potentials and their physical significance' has revealed that they
represent the relevant information contained in the Reynolds stress tensor and are fundamental
turbulence quantities in their own right.



Many existing RANS models require a constitutive algebraic relation between the
Reynolds stress tensor and the mean flow gradients. The most common relation is the eddy
viscosity model, R=2kI-v,(Vu+Vu"), where k£ is the turbulent kinetic energy and v, is the

eddy viscosity. More complex constitutive relations are certainly possible™ and these
nonlinear eddy viscosity relations fix a number of deficiencies of the standard linear model,
but they still assume that the turbulence is close to equilibrium and has had time to adjust to
any changes in the mean flow. Unfortunately, many turbulent flows of practical engineering
significance are not close to equilibrium. A classic example is the adverse pressure gradient
boundary layer. Other examples include rapidly strained flows and three-dimensional
boundary layers. The equilibrium assumption imbedded in any constitutive relation for the
Reynolds stress tensor is emphasized here because the proposed model avoids such a relation
and therefore has the potential to predict non-equilibrium turbulent flows more accurately.

There is some prior evidence that models which avoid a constitutive relation for the
Reynolds stress tensor outperform other models of the same general class. Both examples of
this phenomenon come from models developed for nearly parallel shear flows (where the
Reynolds shear stress is the important Reynolds stress). For example, the zero-equation
model of Johnson & King® solves an ordinary differential equation for the maximum turbulent
shear stress. As a result it often performs better than other zero-equation models which use
the traditional approach of defining an eddy viscosity. A similar result is also obtained with
one and two-equation models. The model of Bradshaw, Ferriss & Atwell’ was widely
accepted to be the most accurate model of the 1968 Stanford competition®. This model
differed from the competitors in that it solved an equation for the shear stress directly, rather
than using a constitutive equation involving the mean shear. The principal drawback of both
these methods (and probably the reason that they are not more popular) is that they can only
be applied to nearly parallel shear flows. In some sense, the proposed model can be viewed as
a way to generalize the model of Bradshaw et. al. to arbitrary flows.

In the past, for arbitrary flows the only alternative to using a constitutive relation was to
solve modeled transport equations for the Reynolds stress tensor itself. Reynolds stress
transport models can potentially contain more physics than eddy-viscosity based models,
however the equations are significantly more difficult to solve. In three-dimensions one must
solve six highly coupled transport equations for each Reynolds stress. The equations are stiff,
and none of the Reynolds stresses are universally dominant, so uncoupling the equations
numerically is very difficult. In addition, the Reynolds stress tensor is a positive definite
tensor but the modeled equations often do not preserve this property (realizability’). The
proposed model does not suffer from these difficulties. It involves half the equations of a
Reynolds stress transport model. The equations are not strongly coupled and are not
numerically stiff.

The key to developing a model which avoids the use of a constitutive relation and yet does
not involve the complexity of a full Reynolds stress transport closure is to note that the
Reynolds stresses contain more information than required by the mean flow. Only the
divergence of the Reynolds stress tensor (a body force vector) is required to solve for the
mean flow. With this in mind, the potential turbulence model defines two new turbulent
quantities — the scalar and vector potentials of the body force vector. The advantages of a
model that uses these turbulent potentials, rather than the body force vector itself, are twofold.



Firstly, this allows the momentum equation to remain a conservative equation. Secondly, and
more importantly, these potentials have a very clear physical interpretation which will
facilitate the construction of models for their evolution. Turbulence modeling based on the
force vector itself (or its rotational component — the Lamb vector) have been proposed by Wu,
Zhou & Wu'’, and Marmanis'', but the author is not aware of any model results based on
these ideas.

2. TURBULENT POTENTIALS

The scalar potential, ¢, and vector potential, y, of the turbulent body force are defined
mathematically by the following equations.

Vo+Vxy=V-R (1a)
V.y=0 (1b)

The second equation is a constraint on the vector potential. Other constraints are possible
but this is the simplest for the purposes of our analysis. These equations can be rewritten to
express the turbulent potentials individually.

Vi¢=V-(V-R) (2a)
Viy=-Vx(V-R) (2b)

The boundary conditions on these elliptic equations are constructed intuitively. Both
potentials are required to go to zero at infinity, at a wall, or at a free surface. Note that by its
very definition (Eqn. 1a) the scalar potential is the part of the turbulence that contributes to the
mean pressure but does not effect the mean vorticity. Only the vector potential has the ability
to effect the mean vorticity, and it only moves the vorticity around (enhanced transport), it
does not create or destroy mean vorticity. Physically, we sometimes find it useful to regard
the scalar potential as a measure of the average pressure drop in the cores of turbulent vortices,
and the vector potential as a measure of the average vorticity magnitude of the turbulent
vortices.

In flows with a single inhomogeneous direction (say the y-direction), Eqns. (2a) and (2b)
simplify to ¢=R,,, v, =-R,,, v, =0,y, =R, . For this reason, it is also reasonable to view the

vector potential as a conceptual generalization of the shear stress (u'v') to arbitrary geometries
and three dimensions. In two-dimensional mean flows the vector potential is aligned
perpendicular to the flow (like the vorticity) and has only a single nonzero component ().
The scalar potential (in combination with the turbulent kinetic energy) gives a good indication
of the anisotropy of the turbulence and is fundamental to modeling the presence of walls
and/or surfaces without using wall functions. The scalar potential is a positive semi-definite
quantity in flows with a single inhomogeneous direction. It is hypothesized that this is also
true for arbitrary flows.

In three-dimensional flows the presence of the divergence free constraint on the vector
potential implies that the vector potential can be computed at a cost roughly equivalent to the



scalar potential. Since the k£ and & transport equations are also solved with the model, the
overall complexity and cost of solving the potential model is four transport equations. This is
roughly half that of a full Reynolds stress transport equation closure (seven equations), with
little, if any, loss in the overall predictive capacity.

3. TURBULENT POTENTIAL MODEL
The transport equations that constitute the turbulent potential model are summarized below.
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The constants are:

6,=08,06,=12,C, =15,C,=183,C,=0.17,C, =42,C,,=2,C, =.12,C,, =*.

The two constants given by fractions are determined by matching Rapid Distortion Theory
(RDT) in the case of strongly sheared turbulence. A detailed derivation of these equations is
found in Reference [2].

Initially these equations appear daunting. In fact, they represent a fairly simple extension
of the classic k-£ equation system, and are relatively simple compared to Reynolds stress
transport equation models. The second source term in the potential equations (in parentheses)
is a dissipation-like term. This term is a standard dissipation model with two near-
wall/surface modifications, one for the dissipation and one for the near wall pressure
correlation term. These modifications are active in the laminar sublayer and allow the model
to obtain the correct asymptotic behavior in the sublayer. The source terms involving the



constants C, and C,, are pressure-strain redistribution terms. The slow pressure-strain is

based on return-to-isotropy and the fast pressure-strain is based on isotropization of the
production model. The constants are set to common values for these models. The effect of
system rotation can be explicitly included in the model, (as with a Reynolds stress transport
equation model) but is not necessary in this context.

While the model includes transport equations for k and ¢ it should be emphasized that the
proposed model is a significant departure from standard two-equation models. £ and & are
now auxiliary quantities that are only used to help model the source terms in the turbulent
potential evolution equations. They are not used to determine the Reynolds stress tensor or
the resulting mean flow. The elimination of the constitutive equation for the Reynolds
stresses is an important departure that removes one of the weaker modeling assumptions. A k-
o implementation could easily be substituted for the current choice of & and &  The
dissipation rate was chosen because some of the test cases have this quantity available for
comparison. If computational time is a serious issue, algebraic models for either or both of
these variables can be used. In particular, for shear dominated flows, k=2(¢+ Ey-y/¢)and
e=C, P are good approximations. The latter expression is equivalent to the linear eddy

viscosity hypothesis (though used in a different context). Computations of turbulent channel
flow with these algebraic expressions and E=1.1showed a reasonable agreement with the
DNS data of Kim, Moin & Moser'?.

Some of the important theoretical properties of the model are summarized below:

e (Correct decay of homogeneous isotropic turbulence.

e Correct behavior in the log layer.

Correct behavior for homogeneous shear flows at early times or after the sudden

introduction of mean shear along a streamline.

Correct behavior for homogeneous shear flows at long times.

Exact asymptotic behavior near walls.

Exact asymptotic behavior at free surfaces.

No ad hoc damping functions or functions of the wall normal distance (which is poorly

defined in complex geometries).

No ad hoc manipulation of the model constants for different flows.

Explicit dependence on system rotation if it is present.

Natural relaminarization, and precise control of turbulence growth during transition.

Stability/Numerical robustness (for the flows tested to date).

A complexity roughly twice that of two-equation models and half that of Reynolds

stress transport equation models. Note that most modern two equation models (see

Durbin'? and also Craft et al.'*) add one or two additional PDEs making this model

directly comparable in complexity to ‘enhanced’ two equation models.

e Exact transport equations (albeit unclosed) from which to derive the model terms.
When adding additional physical effects (compressibility, particle interactions,
buoyancy, etc.) the exact equations give a concrete analytical expression from which to
construct the model extensions.

e No algebraic constitutive relations relating the turbulence to the mean flow.



4. ADVERSE PRESSURE GRADIENT BOUNDARY LAYERS

Adverse pressure-gradient boundary layers represent a situation where the classic
assumptions of turbulence modeling are not well approximated. In particular, the turbulence
is not in equilibrium with the mean flow, and the eddy viscosity hypothesis is a poor
approximation. Two equation models (even the more elegant models, such as Durbin’s elliptic
relaxation model) tend to have some problems predicting adverse pressure boundary layers.
However, models which predict the shear stress directly (Johnson & King, Bradshaw, Ferriss
& Atwell, and full Reynolds stress closures) generally show considerably more success with
these types of flows. Since the potential model also directly predicts a quantity akin to the
shear stress, it is expected to perform well in these situations.

A common adverse pressure-gradient flow for tests of turbulence models is the experiment
of Samuel & Joubert'’. The experimental and computed velocity profiles at two downstream
locations (Samuel & Joubert’s station 9 and station 12) are shown in Figure 1. Only the
nondimensional profiles are available for this experiment.

A more difficult test of the model’s ability to capture separating flows is given by the
experiments of Schubauer & Spangenberg'®. This experiment has a very strong adverse
pressure-gradient which comes very close to causing separation. The data is dimensional,
which means that the boundary layer growth must also be predicted correctly for this test case.
Figure 2 shows velocity profiles for the initial condition and three downstream locations of
this flow compared with the experiments. The poorer agreement at the last station, close to
separation, is thought to be a result of the boundary layer approximation, not necessarily the
model.
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5. BACKWARD FACING STEP

The first backward facing step case is for a step with an expansion ratio of 1.2 and a
Reynolds number of 5100 (based on the maximum velocity and step height, H). This geometry
corresponds to the DNS simulations of Le & Moin'’ and the experimental results of Jovic &
Driver'®. The step is located at y/H=1 and x/H=0. The calculation domain extends from —3H
upstream of the step to 27H downstream and 6H in the vertical direction. The mesh consisted
of 120x120 quadrilateral cells stretched so as to resolve the boundary layers, shear layer, and
the reattachment zone. The computed reattachment point was found to be 6.36 step-heights
downstream of the step. This corresponds very favorably with the value of 6.28h found by the
DNS simulations and 6.1h found by the experiments. DNS data and model predictions for the
mean velocity are shown for a number of downstream positions in Figure 3. This figure
focuses on a reduced area of the computational domain where the flow is most complex.
Squares indicate the DNS results and solid lines indicate the model predictions. There appear
to be some differences in the inlet velocity profile, and the magnitude of the velocity in the
recirculation bubble is slightly underpredicted, but the overall agreement is reasonable.

The higher Reynolds number backstep experiment of Driver & Seegmiller’” was also
calculated. The Reynolds number is an order of magnitude larger (37,500) and the expansion
ratio is somewhat smaller (1.125). The mesh was increased near the walls (to 140x140) to
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Figure 3. Velocity profiles at several downstream positions for the low Re number backward
facing step. Symbols, experimental data of Le & Moin. Solid lines, model predictions.



capture the thinner boundary layers. Figure 4. shows the experimental and predicted velocity
profiles at a number of downstream positions. The results are typical of low Reynolds number
Reynolds stress transport equation models®’. The reattachment point is well predicted but the
strength of the recirculation zone is underpredicted, and the boundary layer does not recover
quickly enough. It is believed that corrections to the vector potential equation could correct
both of these deficiencies.
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Figure 4. Velocity profiles at several downstream positions for the high Re number backward
facing step. Symbols, experimental data of Driver & Seegmiller. Solid lines, model predictions.

6. IMPINGING JET

Calculations of an impinging slot jet were performed to test the accuracy of the model in
stagnation point flows. Comparisons of the local Nusselt number on the base plate were made
at a Reynolds numbers of 2900 (based on the jet width and average jet exit velocity) and a jet
height of two nozzle widths (H/W=2). The local Nusselt number as a function of the distance
from the jet centerline is shown in Figure 5. The peak value compares very well with the
experimental data of Martin*'. It is suspected that coarse mesh resolution towards the domain
exit reduces the quality of the predictions far from the jet centerline. Standard two-equation
models incorrectly predict the maximum Nusselt number by as much as 100%. This is due to
the spurious production of kinetic energy on the portion of the plate directly beneath the jet
(in the stagnation region). The success of the turbulent potential model is attributed to the fact



that it does not produce kinetic energy in the stagnation region. Contours of the turbulent
kinetic energy are displayed in Figure 6. to demonstrate this fact. Due to symmetry
considerations only one half of the domain is displayed. The jet enters at the top left of the
domain and exits to the right.
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Figure 5. Local Nusselt number as a function Figure 6. Contours of turbulent kinetic
of distance from the jet centerline. Re=2900. energy. Note the lack of kinetic energy at
the stagnation point.

7. CONCLUSION

Calculations of relatively complex turbulent flows were performed using the turbulent
potential model. The model produced predictions that were superior to many two-equation
models and comparable to Reynolds stress transport equation models. However, we estimate
the computational cost of the turbulent potential model to be very similar to enhanced two
equation models. It was found that the transport equations for the potentials could be
uncoupled and updated individually and that the system of equations was no stiffer than a
standard k/e implementation. The proposed transport equations can be integrated up to a wall
or surface; they do not require wall functions. In addition, no ad hoc functions of the wall
normal coordinate have been used, so the model can be implemented easily into existing flow
solvers and complex geometries.
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