CFD2007, 18 Annual Conference of the
CFD Society of Canada, Toronto, May 2007

I mplementation of an Efficient Conjugate Gradient
Algorithm for Poisson Solutions on Graphics Processors

S. Menon and J. B. Perot

Department of Mechanical and Industrial Engineering, University of Massachusetts
Amherst, MA - 01003

Email: sandeepm@engin.umass.edu

applications operate on large arrays of variables, in a
ABSTRACT fashion that involves very minimal reuse of data —

Programmable graphics processors have achieved tfR@d are also well suited to the SIMD paradigm.

distinction of being very efficient and cost-effective Graphics hardware also benefits from the use of
in terms of floating-point capacity, thereby making it jyproved memory bandwidth technology, which is a

an attractive option for scientific computing. In this ¢ritical factor for scientific applications that involve

paper, we discuss the implementation of thgarge sets of data. For instance, the sequential
Conjugate Gradient iterative solver on a graphic§nemory access bandwidth of a GeForce 6-series
processor. A Poisson equation is solved with thespy (which costs about $50) is about 20 GB/sec, as
graphics processor on an unstructured threeg posed to 6 GB/sec for a Pentum 4. Since
dimensional mesh and compared on a standard CPltientific calculations are almost all memory bound
implementation. The implementation has also beefyis results in a direct improvement in algorithm

extended to solve the Navier-Stokes equations usingerformance. A similar comparison can be made for

the Fractional Step method. Using graphicsyandom memory accesses (see Fig. 1).
processors as math coprocessors will greatly benefit

applications, such as fluid-flow solvers, which 50 5
require efficient hardware and software to solve large : | —
sparse systems.]

'y
(=1
Lii

1. INTRODUCTION

(]
(=]
A FERE A

Today, Graphics Processing Units (GPUSs) provide
the most cost-effective means of floating-point
computational capacity, driven primarily by the
multi-million dollar gaming industry. More recently,

GBytes/sec

p—
(=1
AWl PR TR RN TR

the capability to program these units for specialized

tasks has provided increased versatility and therefore,]

researchers have explored this architecture for more 0] |]

general-purpose use. With the advent of 32-bit Cache Seq Rand Cache Seq Rand
floating-point capabilities on more recent GeForce 7800 GTX Pentium 4

architectures, the feasibilty for scientific

computation has become quite apparent. Moreover,
the current trend of hardware for graphics processors
is accelerating at ever-increasing rates, easily outfhe conjugate gradient algorithm is a common
performing conventional cache-based processors fqterative method for solving large sparse matrix
applications with high arithmetic intensity [1]. systems that exhibit the property of being symmetric

The Single Instruction Multiple Data (SIMD) nature gnd positive-definite. Such systems frequently arise

of almost all graphics applications is the primary™ the solution of discretized linear and non-linear
reason whystreaming architectures, like the one partial differential equations such as the Poisson

implemented on GPUs, are ideally suited fore€quation. They also form a large portion of the CPU

electronic games and multimedia. Most scientificcost of numerous incompressible flow solvers, since
the solution for pressure is basically a Poisson

Figure 1: Memory bandwidth comparison

equation to ensure continuity. The algorithmlarge amount of pixel-processing steps required in
primarily consists of three operations that must begraphics applications, modern graphics processors
highly efficient for the solution to be competitive in contain a large number of fragment processing units,
terms of CPU cost — reduction operations like awhich form the primary workhorse of the pipeline.
vector dot-product, the axpy operation (definedyas For this reason, our scientific calculations primarily
= y+ a.X), and the sparse-matrix multiply operation. use the fragment processing units.

A practical example would be the solution to thes o ina algorithmsto the GPU
steady-state homogenous heat-diffusion equation,’ apping &g

given by: Graphics processors udextures to store data in
B B memory. Textures are usually two-dimensional
0.q =0, whereq = - KIT bitmaps that are wrapped onto polygon faces to

We implement this on an unstructured tetrahedrafchieve realistic effects. In this case, they form an
mesh using a classical finite-volume method, as welphalogy to arrays in conventional memory layouts.

as a node-based Discrete Calculus approach [2]. However, this also means that appropriate
transformations must be applied to one-dimensional

CPU arrays to map them onto two-dimensional GPU
equivalents. One- and three-dimensional texture
Although the hardware is well-suited to the afore-layouts are also available on the GPU, but since the
mentioned application, implementation of the two-dimensional layout is closely related to the

algorithm involves mapping it to an unusual pattern of fragments generated by the rasterizer, it is
programming model that is obviously tailor-made formuch more efficient. Therefore, each scientific array
the graphics model. This requires a fairly thoroughis now laid out as a rectangle and defined by a width
understanding of the underlying hardware and itsand a height rather than a single-dimensional length.

limitations. While this paradigm is explained herein,
we have implemented a subset of the BLAS routine
on the GPU in a manner that could be used by ang
scientific programmer.

2. IMPLEMENTATION

¥Vhile a one-dimensional array of 12 items should
robably be laid out as a 3x4 or 4x3 two-dimensional
rray, the mapping of a one-dimensional array of 13
items into a 2D equivalent is less obvious. In such
2.1 TheGraphicsPipeline cases, padding the array with extra elements is
necessary. Consideration must also be given to the
Graphics processors are designed with intention ofiature of the layout, which the GPU requires to be
accelerating the process of drawing three-either square or rectangular. Square layouts are
dimensional geometric primitives to the screen in theadditionally required to a power-of-two length in
form of projected two-dimensional images. Theeach dimension, which means that the amount of
modern graphics pipeline involves several stagepadding would be too large for larger array lengths.
through which this is achieved: Since the padded elements are also processed by the
GPU, the overall performance would also drop in
beproportion to the amount of padding. Rectangular
layouts, however, are less restrictive in this regard.

The vertex processing stage: Geometric primitives
are defined by vertex data, which must
appropriately transformed to the two-dimensional
screen by applying an appropriate transformatior {0, height) {width, height)
matrix. Since vertex data is frequently manipulated
for sophisticated effects, this stage of the pipeline i
fully programmable.

Draw Vertices
Height Viewport

Vertex Processors

The rasterization stagee This is a non- (0,0 (width,0)
programmable stage that essentially fills transformec Width _ Generates
geometric primitives with ‘fragments’, which are Rastefizer | Fragments
essentially pixels that do not contain any color
information.

The fragment processing stage: Fragments that are
generated by the rasterization stage are passed in
the programmable fragment processor, which applie
appropriate coloring/lighting calculations to
determine the final pixel color-value. These pixels
are then sent to the frame buffer for display. Due to

Output Kemel

P S

Y

Figure 2: Mapping algorithms to the graphics
pipeline

The computational kernels of the algorithm are2.2.2 Axpy (y=y+ a.x)
programs that are written for the vertex and fragmeniry,o add-and-multiply operation is implemented on

processors that perform an operation identically onne cpuU with relative ease, since both the ‘y’ and *x’
all entities being processed. By defining a viewportyeciorfields are sized equally in both dimensions,
with dimensions equal to that of the array andyng 5 1:1 correspondence exists for all fragments.
drawing an equally sized rectangular region on therne gperation involves a sequentially accessed
screen, the rasterizer generates a fragment for ea?ﬁ'emory-fetch from either array, followed by a write

element in the output array and applies the kemelyeration to the output attached to the frame buffer.
programs to them. The results of the computation can

then be redirected to another array which is attache@d2.3 Sparse-Matrix Multiply

to the frame buffer. In doing so, these computedrhe sparse-matrix multiply in the conjugate gradient
results can be used as inputs to a subsequepfop is decomposed into multiple sparse matrix
operation, thereby establishing a feedbackgperations that act on variables located either on
mechanism (this is represented in Figure 2). faces or cells in the unstructured tetrahedral mesh for
221 Reduction the finite volume dispretization scheme, or at nodes
. , for the node-based discrete calculus approach. In the
Reduction operations operate on large streams of daface of a finite volume technique, the discretized

to produce a single result. Examples include sumyoy of the steady-state homogenous heat-diffusion
vector dot-product, min and max. Since GPUs argquation is given as:

optimized for read-only / write-only operations in
memory, such operations involve acting on adjacent D (-kGTg) = 0
data for each fragmen'; and rendering to ano_the\yvhere G and D are the discrete gradient and
rectan_gular array of half its Ieng_th in each d'mens'ondivergence operators, respectively.

In doing so, each element in the output array

corresponds to the local sum of four elements in thdhe mesh-connectivity information is maintained in
input array; which is also beneficial because it helpseparate lists that establish the relationship between
to minimize errors due to round-off. This process isvarious entities (for example, cell-face, cell-node, or
then repeated in subsequent passes until a small sif&ce-edge connectivity, etc).

results. After the array is reduced, one possible
approach is to padded the reduced array with zeros to

the next appropriate power-of-two dimension, and Connectivity
finally reduced to a single value, as shown in Fig. 3| [source Lists
This is done to ensure reduction operations on Entity \; R’F‘fjfd"
arbitrarily- sized rectangular textures. Field ||:',> Discrete |l::>
Operation
\-.\ \" Div, Grad
i~ ~ N - \
— IR %// li \~.\ Figure 4: Sparse-matrix multiply operations

The discrete operator is represented as a fragment
Lo 1 _L.—-- O program that performs random-access memory-
fetches from a source-field based on indices
(represented as 2D texture coordinates) using the
appropriate connectivity-list, and writes to the
Another approach for the final reduction step is tocorresponding output fragment in the resultant field.
read the reduced array back to the CPU and completes a cell-based finite-volume discretization for
the summation there, since the CPU is relativelyexample, a discrete gradient operator takes values
more efficient for smaller sets of data. This proves tdocated at cell centers to compute the flux at cell-
be a more efficient approach. faces. A discrete divergence operator does the

Padding the array with zeros does not interfere wittpPpPosite. — 1t t_akes values Iocated_ at cell-faces to
compute the divergence of the variable at the cell-

reduction operations like the sum and the dot-
product, but is an issue when operations like a min ofenters.
a max is considered; since zero might mistakenly b@ graphics processor can efficiently handle “gather”
reported as the min / max value of the array. Thuspperationsg = x[i]), whereas an indirect write to
for min / max operations, the array is padded with thenemory, i.e., a “scatter” operatioa[(i] = x) is

first element of the array. not natively supported. The discrete divergence

Figure 3: Reduction on arbitrary size rectangular
textures with the padding approach

operation is inherently a scatter operation wheraccuracy (first order accurate). However, we will
implemented on the CPU, since it shares the samf®cus on hardware efficiency rather than accuracy at
mesh-connectivity structure as the gradient. On théhis point, since other methods which overcome this
graphics processor however, it must be reformulatedifficulty exist, and can be easily incorporated [6].

as a gather operation and therefore requires a n

e . . .
connectivity structure to be calculated (once). As pointed out by Perot [7], the discretized

incompressible Navier Stokes equations can be
The node-based discretization approach assumesviéewed as a block LU decomposition in the form:
control volume which surrounds each node in the - . .
mesh, called dual-mesh cells. For more details on the A GI(v™) (r N bc's
node-based discrete-calculus approach, refer to n+l | '

. , D Ojlp 0 bc's
reference [2]. An interpolation operator takes vector

yalues located at cell-centers to compute aRyhere G and D are the discrete gradient and
interpolated flux located at faces, while the yiergence operators mentioned earlier, and A is a
complementary integration operator computes ary,n matrix whose structure depends on the form of
integrated vector value at cell-centers from ﬂuxtemporal and spatial discretization. A typical

values at faces. Similar approaches can be taken Qy,cryre forA (such as the one incorporated here), is
construct other operators such as the discrete curl, o5 et diffusion implicitly for stability and an

instance. explicit advection term along with a temporal term if
2.2.4 Boundary conditions the flow is unsteady. This system can be decomposed

Incorporating boundary conditions in the solver is afurther to yield the fractional step method:

slightly more involved procedure. Boundary [a 0 | AMG v " bc's
conditions fall under the category of a scatter ~ = +
operation, since the specification of a Dirichlet or| D —-DA'G||0 | pmt 0) \bc's

Neumann condition involves writing to specific

locations in memory. This leads to the estimation of an intermediate

The workaround in this case would be to use th&/elocity v’ which is non-divergence free, and must be
vertex-processor for the scatter operation. ByCOfrthed for pressure at timeby solving a Poisson
drawing a vertex to a specific coordinate location in€gquation.

the framebuffer and specifying the boundary valuerne chosen domain in this case is a three-
along with it, the effect of a scatter operation isyimensional driven-cavity flow with typical

achieved. However, as individual points have to b&gngitions of no-slip and zero pressure-gradient
drawn using OpenGL library calls from the CPU; this ,qmal to the walls.

proves to be a major bottleneck especially for
geometry which involves a large ratio of boundary to 3. RESULTS
interior entities. This is alleviated to a small extent if

the boundary coordinates and their associated valué@e ﬁlgorlthrgs Wec:ebtesterz]d W'Lh ;n nv.'d'? 660%%1;)
are pre-computed on the CPU and stored in a vert rapnics card, and benchmarked against an

buffer, which resides on GPU memory. Unless th thlon64 running at 1.81 GHz and a Front-Side Bus

boundary conditions are time-varying, this proves toOf 400 MHz. OpenGL was used as the underlying

be a fairly efficient approach. Nevertheless, it is onlygraphics-APl, as an interface between the application
a fraction of the efficiency achieved by the data-and the underlying hardware.

streaming paradigm. For details on thisFigure 5 compares the performance on both
implementation, refer [3]. processors for a sum-reduction operation on a large
array of data, showing GFlops as a function of

problem-size. The plot exhibits typical behavior, with

The conjugate gradient algorithm described aboveéhe GPU (triangle-symbols) outperforming the CPU

has also been used to implement an unsteadysquare-symbols) on substantial problem-sizes, by a
incompressible Navier-Stokes solver on the graphic$actor of about 350%.

processor using the classical Fractional-Step
approach. This method was first introduced
independently by Chorin [4] and Temam [5] as a
practical approach to the solution of incompressible
fluid-flow. The approach has a few major drawbacks,
including the fact that it exhibits poor temporal

2.25 Navier-Stokesimplementation

2 ~/\-nVidia 6600GT
—L-Athlon64 - Single Precision

1 0 5 . -
10° ° 10 10 10 10
Problem Size Problem Size

Figure5: Sum-reduction comparison Figure 6b: Axpy comparison

Figure 6a and 6b shows a similar plot for a vector '9ure 7a and 7b shows the sparse-matrix-multiply
dot-product and axpy operation respectively. The dotgomparison fqr a gradient _and Integration operation.
The interpolation operator involves two dot-products

product also achieves a speed-up of about 350%, . ;
while the axpy operation achieves a speed-up o?nd an addition operation for each face, as opposed to
single subtraction for the gradient. This would

about 500% on problem sizes of interest. For & . X)
nVidia GeForce 6600GT, the sequential memory_explaln the hllgher performance. Owing to the rando_m
access bandwidth is specified as 16GB/sec. One hatﬁxture—fetchlng nature of the sparse matrix

of this bandwidth is for reading and the other half formultiplicgtion 'operatior}, the GPL.J performance
writing. This translates into 2 Gigawords / secdrops with an increase in problem-size, but the GPU

- o ; still outperforms the CPU by a factor of about 250%.
(single preC|'S|on) regd andfor write. Theim and andorg memory accessesyon the GPU are roughl; 6
axpy opergtlons confirm that the GPU can operatg Aimes slower than sequential access and so sparse
close FO this peak performance. For the reduct'ori’natrix operations are also slower by roughly this
operations, peak performa_nce requires vector Iengtlhﬁ;\ctor. This can be alleviated to a small extent by a
of 100k or larger. The simpler operations like .thebandwidth reduction process that re-numbers the
axpy can perform at peak speeds for array sizeg,nnectivity indices: thereby allowing increased

down to as small as 10k. memory-accesses within the cache of the processor.
The drop in performance for the CPU is clearly os : -

. . . . ~[1-Athlon64 - Single Pr i
evident for larger problem sizes, which confirms the A
observation that it is poorly suited for scientific °“ TN]
applications (which tend to involve large data sets).. .| S

N
2
2 Tt:\:/r:?o‘igf?osslr;rgle Precision /Q>) 0351 \\
18F An DA \] 2 L
/@4_\\& ﬁ 2556\ 2 o3 \\A\
1.6 //)‘ o PAN
| Fa A: 0.25}
/ q
- N — 0.2F
&] 0.15} \\
I S I
0.1 4 ‘5 6 7
WD—5—o— 0 0 oo " " Problem Size " *
Figure 7a: Gradient operator comparison

L I Alnin
3 7 5 6

10
Problem Size

Figure 6a: Vector dot-product comparison

~{1-Athlon64 - Single Precision
-/ nVidia 6600GT
14+ A
X \
1 W
Q\\,
—
~A
0.9+ ~—_
~—A

» A
o
Sos
™
o

0.7+

0.6

0.5- =

e 50 4
0.4 - L
10° 10° 10° 10

Problem Size

Figure 7b: Integrate operator comparison

When a full scientific algorithm is implemented using
these GPU operators the performance is dominate
by sparse matrix multiplies. Figure 10 shows the oo

. X B ~/\-nVidia 6600GT
iteration comparison ,|[=-Athionss - single Precision

computation-time per CG

between both processors for the Conjugate Gradiet
algorithm for various problem-sizes, using the finite-
volume cell-based discretization. The computation is %3
performed on a realistic geometry (a crankshaft) fol, oo
various mesh-resolutions, shown in Fig. 8. Dirichlet
boundary conditions are specified at the ends of thg
crankshaft, while the rest of the walls are insulated
Typical contours for temperature are shown in Fig. 9. oot

"

Figure 8: Crankshaft mesh geometry used for the

computation

figure9: Temperature contours along the crankshaft

0.04f
0.025/ o
= o0.02F

001 -

0005 A

| . | . | \
85 1 15 2 25 3 35
Problem Size

Figure 10: Performance of the Conjugate Gradient
algorithm for the Poisson Solution (cell-based finite-

volume discretization)

A similar result is obtained for the node-based
discrete-calculus approach shown in Fig. 11, where
the time per iteration is compared for both the
architectures. Clearly, the difference in computation
cost is significant for larger problem sizes, with the
graphics processor outperforming the CPU by a

factor of about 2.

o
o

T
~/\-nVidia 6600GT
—}Athlon64 - Single Precision

Time / Iter
° o o o o o
P = o > N =

o

)
T
\

o

o
R
\

1 5 2
Problem Size

L
25

L
3.5

4
x10°

in almost an order of magnitude performance
increase over currently available commodity CPUs.

Owing to the streaming nature of the hardware,
graphics processors have clearly demonstrated the
ability to act as very efficient and cost-effective math
co-processors for problems involving a large amount
of numerical effort.

ACKNOWLEDGEMENTS

Partial financial support for this work was provided
by the Office of Naval Research (Grant NO0014-01-
1-0267), the Air Force Office of Scientific Research
(Grant FA9550-04-1-0023) and the National Science
Foundation (Grant CTS-0522089).

Figure 11: Performance of the Conjugate Gradient
algorithm (node-based discretization)

[1]
For the solution of the driven-cavity flow, since the
diffusion term is treated implicitly, each time-step
involves four calls to the conjugate gradient solver —
three for the momentum equations and the other for
pressure. The performance results for the pressufgl
solver are shown in Fig. 12.

1
- Athlon64 - Single Precision ' 0 [3]
-/ nVidia 6600GT
09 1
//

0.8-

0.7 / R [4]

0.5 / R [5]

Time / Iter

G

— (7

Problem Size

Figure 12: Performance of the Conjugate Gradient
algorithm for Navier Stokes

DISCUSSION

The solution cost for these algorithms is dominated
by memory accesses and therefore, the performance
of the algorithm is largely dictated by the memory
bandwidth of the architecture.

The nVidia GeForce 8800 GPU has a rated memory
bandwidth of 81GB/sec and so it would be expected
to achieve roughly 10 Gflops for basic math

operations and 2-5 GFlops for the sparse matrix
operations. Since up to four graphics processors can
be placed on a single motherboard, this could result

REFERENCES

Owens, J., Luebke, D., Govindaraju, N., Harris,
M., Kruger, J., Lefohn, A., and Purcell, T. A
survey of general-purpose computation on
graphics hardward=urographics, August 2005,
pp. 21-55.

Perot, J. B., and Subramanian, V. Discrete
Calculus methods for diffusion. J. Comput.
Phys., doi: 10.1016/j.jcp.2006.12.022, 2006.
Menon, S. Using alternative hardware for
scientific calculations. Masters Thesis,
University of Massachusetts, Amherst, 2007.
Chorin, A. J. Numerical solutions of the Navier
Stokes equationsMath. Comput. 22, 745
(1968).

Temam, R. On the approximation of the Navier
Stokes equations using the projection method,
Arch. Rat. Mech. Anal. 32, 377 (1969)

Chang, W., Giraldo, F., and Perot, J. B. Anaysi
of an Exact Fractional Step methddCompuit.
Phys. 180 (1), 2002, pp. 183-199.

Perot, J. B. Analysis of the Fractional Step
method.J. Comput. Phys. 108 (1), 1993, pp. 51-
58

