
Implementation of an Efficient Conjugate Gradient
Algorithm for Poisson Solutions on Graphics Processors

S. Menon and J. B. Perot

Department of Mechanical and Industrial Engineering, University of Massachusetts
Amherst, MA - 01003

Email: sandeepm@engin.umass.edu

ABSTRACT

Programmable graphics processors have achieved the
distinction of being very efficient and cost-effective
in terms of floating-point capacity, thereby making it
an attractive option for scientific computing. In this
paper, we discuss the implementation of the
Conjugate Gradient iterative solver on a graphics
processor. A Poisson equation is solved with the
graphics processor on an unstructured three-
dimensional mesh and compared on a standard CPU
implementation. The implementation has also been
extended to solve the Navier-Stokes equations using
the Fractional Step method. Using graphics
processors as math coprocessors will greatly benefit
applications, such as fluid-flow solvers, which
require efficient hardware and software to solve large
sparse systems.

1. INTRODUCTION

Today, Graphics Processing Units (GPUs) provide
the most cost-effective means of floating-point
computational capacity, driven primarily by the
multi-million dollar gaming industry. More recently,
the capability to program these units for specialized
tasks has provided increased versatility and therefore,
researchers have explored this architecture for more
general-purpose use. With the advent of 32-bit
floating-point capabilities on more recent
architectures, the feasibility for scientific
computation has become quite apparent. Moreover,
the current trend of hardware for graphics processors
is accelerating at ever-increasing rates, easily out-
performing conventional cache-based processors for
applications with high arithmetic intensity [1].

The Single Instruction Multiple Data (SIMD) nature
of almost all graphics applications is the primary
reason why streaming architectures, like the one
implemented on GPUs, are ideally suited for
electronic games and multimedia. Most scientific

applications operate on large arrays of variables, in a
fashion that involves very minimal reuse of data –
and are also well suited to the SIMD paradigm.

Graphics hardware also benefits from the use of
improved memory bandwidth technology, which is a
critical factor for scientific applications that involve
large sets of data. For instance, the sequential
memory access bandwidth of a GeForce 6-series
GPU (which costs about $50) is about 20 GB/sec, as
opposed to 6 GB/sec for a Pentium 4. Since
scientific calculations are almost all memory bound
this results in a direct improvement in algorithm
performance. A similar comparison can be made for
random memory accesses (see Fig. 1).

Figure 1: Memory bandwidth comparison

The conjugate gradient algorithm is a common
iterative method for solving large sparse matrix
systems that exhibit the property of being symmetric
and positive-definite. Such systems frequently arise
in the solution of discretized linear and non-linear
partial differential equations such as the Poisson
equation. They also form a large portion of the CPU
cost of numerous incompressible flow solvers, since
the solution for pressure is basically a Poisson

CFD2007, 15th Annual Conference of the
CFD Society of Canada, Toronto, May 2007

equation to ensure continuity. The algorithm
primarily consists of three operations that must be
highly efficient for the solution to be competitive in
terms of CPU cost – reduction operations like a
vector dot-product, the axpy operation (defined as y
= y + α.x), and the sparse-matrix multiply operation.

A practical example would be the solution to the
steady-state homogenous heat-diffusion equation,
given by:

∇....q = 0, where q = - k∇Τ

We implement this on an unstructured tetrahedral
mesh using a classical finite-volume method, as well
as a node-based Discrete Calculus approach [2].

2. IMPLEMENTATION

Although the hardware is well-suited to the afore-
mentioned application, implementation of the
algorithm involves mapping it to an unusual
programming model that is obviously tailor-made for
the graphics model. This requires a fairly thorough
understanding of the underlying hardware and its
limitations. While this paradigm is explained herein,
we have implemented a subset of the BLAS routines
on the GPU in a manner that could be used by any
scientific programmer.

2.1 The Graphics Pipeline

Graphics processors are designed with intention of
accelerating the process of drawing three-
dimensional geometric primitives to the screen in the
form of projected two-dimensional images. The
modern graphics pipeline involves several stages
through which this is achieved:

The vertex processing stage: Geometric primitives
are defined by vertex data, which must be
appropriately transformed to the two-dimensional
screen by applying an appropriate transformation
matrix. Since vertex data is frequently manipulated
for sophisticated effects, this stage of the pipeline is
fully programmable.

The rasterization stage: This is a non-
programmable stage that essentially fills transformed
geometric primitives with ‘fragments’, which are
essentially pixels that do not contain any color
information.

The fragment processing stage: Fragments that are
generated by the rasterization stage are passed into
the programmable fragment processor, which applies
appropriate coloring/lighting calculations to
determine the final pixel color-value. These pixels
are then sent to the frame buffer for display. Due to

large amount of pixel-processing steps required in
graphics applications, modern graphics processors
contain a large number of fragment processing units,
which form the primary workhorse of the pipeline.
For this reason, our scientific calculations primarily
use the fragment processing units.

2.2 Mapping algorithms to the GPU

Graphics processors use textures to store data in
memory. Textures are usually two-dimensional
bitmaps that are wrapped onto polygon faces to
achieve realistic effects. In this case, they form an
analogy to arrays in conventional memory layouts.
However, this also means that appropriate
transformations must be applied to one-dimensional
CPU arrays to map them onto two-dimensional GPU
equivalents. One- and three-dimensional texture
layouts are also available on the GPU, but since the
two-dimensional layout is closely related to the
pattern of fragments generated by the rasterizer, it is
much more efficient. Therefore, each scientific array
is now laid out as a rectangle and defined by a width
and a height rather than a single-dimensional length.

While a one-dimensional array of 12 items should
probably be laid out as a 3x4 or 4x3 two-dimensional
array, the mapping of a one-dimensional array of 13
items into a 2D equivalent is less obvious. In such
cases, padding the array with extra elements is
necessary. Consideration must also be given to the
nature of the layout, which the GPU requires to be
either square or rectangular. Square layouts are
additionally required to a power-of-two length in
each dimension, which means that the amount of
padding would be too large for larger array lengths.
Since the padded elements are also processed by the
GPU, the overall performance would also drop in
proportion to the amount of padding. Rectangular
layouts, however, are less restrictive in this regard.

Figure 2: Mapping algorithms to the graphics
pipeline

The computational kernels of the algorithm are
programs that are written for the vertex and fragment
processors that perform an operation identically on
all entities being processed. By defining a viewport
with dimensions equal to that of the array and
drawing an equally sized rectangular region on the
screen, the rasterizer generates a fragment for each
element in the output array and applies the kernel
programs to them. The results of the computation can
then be redirected to another array which is attached
to the frame buffer. In doing so, these computed
results can be used as inputs to a subsequent
operation, thereby establishing a feedback
mechanism (this is represented in Figure 2).

2.2.1 Reduction

Reduction operations operate on large streams of data
to produce a single result. Examples include sum,
vector dot-product, min and max. Since GPUs are
optimized for read-only / write-only operations in
memory, such operations involve acting on adjacent
data for each fragment and rendering to another
rectangular array of half its length in each dimension.
In doing so, each element in the output array
corresponds to the local sum of four elements in the
input array; which is also beneficial because it helps
to minimize errors due to round-off. This process is
then repeated in subsequent passes until a small size
results. After the array is reduced, one possible
approach is to padded the reduced array with zeros to
the next appropriate power-of-two dimension, and
finally reduced to a single value, as shown in Fig. 3.
This is done to ensure reduction operations on
arbitrarily- sized rectangular textures.

Figure 3: Reduction on arbitrary size rectangular
textures with the padding approach

Another approach for the final reduction step is to
read the reduced array back to the CPU and complete
the summation there, since the CPU is relatively
more efficient for smaller sets of data. This proves to
be a more efficient approach.

Padding the array with zeros does not interfere with
reduction operations like the sum and the dot-
product, but is an issue when operations like a min or
a max is considered; since zero might mistakenly be
reported as the min / max value of the array. Thus,
for min / max operations, the array is padded with the
first element of the array.

2.2.2 Axpy (y = y + α.x)

The add-and-multiply operation is implemented on
the GPU with relative ease, since both the ‘y’ and ‘x’
vector-fields are sized equally in both dimensions,
and a 1:1 correspondence exists for all fragments.
The operation involves a sequentially accessed
memory-fetch from either array, followed by a write
operation to the output attached to the frame buffer.

2.2.3 Sparse-Matrix Multiply

The sparse-matrix multiply in the conjugate gradient
loop is decomposed into multiple sparse matrix
operations that act on variables located either on
faces or cells in the unstructured tetrahedral mesh for
the finite volume discretization scheme, or at nodes
for the node-based discrete calculus approach. In the
case of a finite volume technique, the discretized
form of the steady-state homogenous heat-diffusion
equation is given as:

D (- k G TC) = 0

where G and D are the discrete gradient and
divergence operators, respectively.

The mesh-connectivity information is maintained in
separate lists that establish the relationship between
various entities (for example, cell-face, cell-node, or
face-edge connectivity, etc).

Figure 4: Sparse-matrix multiply operations

The discrete operator is represented as a fragment
program that performs random-access memory-
fetches from a source-field based on indices
(represented as 2D texture coordinates) using the
appropriate connectivity-list, and writes to the
corresponding output fragment in the resultant field.
In a cell-based finite-volume discretization for
example, a discrete gradient operator takes values
located at cell centers to compute the flux at cell-
faces. A discrete divergence operator does the
opposite – it takes values located at cell-faces to
compute the divergence of the variable at the cell-
centers.

A graphics processor can efficiently handle “gather”
operations (a = x[i]), whereas an indirect write to
memory, i.e., a “scatter” operation (a[i] = x) is
not natively supported. The discrete divergence

m x n
1 x 1

Source
Entity
Field

Discrete
Operation

Div, Grad

Connectivity
Lists

Result
Field

operation is inherently a scatter operation when
implemented on the CPU, since it shares the same
mesh-connectivity structure as the gradient. On the
graphics processor however, it must be reformulated
as a gather operation and therefore requires a new
connectivity structure to be calculated (once).

The node-based discretization approach assumes a
control volume which surrounds each node in the
mesh, called dual-mesh cells. For more details on the
node-based discrete-calculus approach, refer to
reference [2]. An interpolation operator takes vector
values located at cell-centers to compute an
interpolated flux located at faces, while the
complementary integration operator computes an
integrated vector value at cell-centers from flux
values at faces. Similar approaches can be taken to
construct other operators such as the discrete curl, for
instance.

2.2.4 Boundary conditions

Incorporating boundary conditions in the solver is a
slightly more involved procedure. Boundary
conditions fall under the category of a scatter
operation, since the specification of a Dirichlet or
Neumann condition involves writing to specific
locations in memory.

The workaround in this case would be to use the
vertex-processor for the scatter operation. By
drawing a vertex to a specific coordinate location in
the framebuffer and specifying the boundary value
along with it, the effect of a scatter operation is
achieved. However, as individual points have to be
drawn using OpenGL library calls from the CPU; this
proves to be a major bottleneck especially for
geometry which involves a large ratio of boundary to
interior entities. This is alleviated to a small extent if
the boundary coordinates and their associated values
are pre-computed on the CPU and stored in a vertex
buffer, which resides on GPU memory. Unless the
boundary conditions are time-varying, this proves to
be a fairly efficient approach. Nevertheless, it is only
a fraction of the efficiency achieved by the data-
streaming paradigm. For details on this
implementation, refer [3].

2.2.5 Navier-Stokes implementation

The conjugate gradient algorithm described above
has also been used to implement an unsteady,
incompressible Navier-Stokes solver on the graphics
processor using the classical Fractional-Step
approach. This method was first introduced
independently by Chorin [4] and Temam [5] as a
practical approach to the solution of incompressible
fluid-flow. The approach has a few major drawbacks,
including the fact that it exhibits poor temporal

accuracy (first order accurate). However, we will
focus on hardware efficiency rather than accuracy at
this point, since other methods which overcome this
difficulty exist, and can be easily incorporated [6].

As pointed out by Perot [7], the discretized
incompressible Navier Stokes equations can be
viewed as a block LU decomposition in the form:

1

1

. '

0 . '0

n n

n

A G b c sv r

D b c sp

+

+

      
= +      

      

where G and D are the discrete gradient and
divergence operators mentioned earlier, and A is a
sub-matrix whose structure depends on the form of
temporal and spatial discretization. A typical
structure for A (such as the one incorporated here), is
to treat diffusion implicitly for stability and an
explicit advection term along with a temporal term if
the flow is unsteady. This system can be decomposed
further to yield the fractional step method:

1 1

1 1

0 . '

. '0 0

n n

n

A bc sI A G v r

D DA G bc sI p

− +

− +

       
= +       −       

This leads to the estimation of an intermediate
velocity v* which is non-divergence free, and must be
corrected for pressure at time n by solving a Poisson
equation.

The chosen domain in this case is a three-
dimensional driven-cavity flow with typical
conditions of no-slip and zero pressure-gradient
normal to the walls.

3. RESULTS

The algorithms were tested with an nVidia 6600GT
graphics card, and benchmarked against an AMD
Athlon64 running at 1.81 GHz and a Front-Side Bus
of 400 MHz. OpenGL was used as the underlying
graphics-API, as an interface between the application
and the underlying hardware.

Figure 5 compares the performance on both
processors for a sum-reduction operation on a large
array of data, showing GFlops as a function of
problem-size. The plot exhibits typical behavior, with
the GPU (triangle-symbols) outperforming the CPU
(square-symbols) on substantial problem-sizes, by a
factor of about 350%.

Figure 5: Sum-reduction comparison

Figure 6a and 6b shows a similar plot for a vector
dot-product and axpy operation respectively. The dot-
product also achieves a speed-up of about 350%,
while the axpy operation achieves a speed-up of
about 500% on problem sizes of interest. For a
nVidia GeForce 6600GT, the sequential memory-
access bandwidth is specified as 16GB/sec. One half
of this bandwidth is for reading and the other half for
writing. This translates into 2 GigaWords / sec
(single precision) read and/or write. The sum and
axpy operations confirm that the GPU can operate at
close to this peak performance. For the reduction
operations, peak performance requires vector lengths
of 100k or larger. The simpler operations like the
axpy can perform at peak speeds for array sizes
down to as small as 10k.

The drop in performance for the CPU is clearly
evident for larger problem sizes, which confirms the
observation that it is poorly suited for scientific
applications (which tend to involve large data sets)..

Figure 6a: Vector dot-product comparison

Figure 6b: Axpy comparison

Figure 7a and 7b shows the sparse-matrix-multiply
comparison for a gradient and integration operation.
The interpolation operator involves two dot-products
and an addition operation for each face, as opposed to
a single subtraction for the gradient. This would
explain the higher performance. Owing to the random
texture-fetching nature of the sparse matrix
multiplication operation, the GPU performance
drops with an increase in problem-size, but the GPU
still outperforms the CPU by a factor of about 250%.
Random memory accesses on the GPU are roughly 6
times slower than sequential access and so sparse
matrix operations are also slower by roughly this
factor. This can be alleviated to a small extent by a
bandwidth reduction process that re-numbers the
connectivity indices; thereby allowing increased
memory-accesses within the cache of the processor.

Figure 7a: Gradient operator comparison

Figure 7b: Integrate operator comparison

When a full scientific algorithm is implemented using
these GPU operators the performance is dominated
by sparse matrix multiplies. Figure 10 shows the
computation-time per CG iteration comparison
between both processors for the Conjugate Gradient
algorithm for various problem-sizes, using the finite-
volume cell-based discretization. The computation is
performed on a realistic geometry (a crankshaft) for
various mesh-resolutions, shown in Fig. 8. Dirichlet
boundary conditions are specified at the ends of the
crankshaft, while the rest of the walls are insulated.
Typical contours for temperature are shown in Fig. 9.

Figure 8: Crankshaft mesh geometry used for the

computation

Figure 9: Temperature contours along the crankshaft

Figure 10: Performance of the Conjugate Gradient
algorithm for the Poisson Solution (cell-based finite-

volume discretization)

A similar result is obtained for the node-based
discrete-calculus approach shown in Fig. 11, where
the time per iteration is compared for both the
architectures. Clearly, the difference in computation
cost is significant for larger problem sizes, with the
graphics processor outperforming the CPU by a
factor of about 2.

Figure 11: Performance of the Conjugate Gradient
algorithm (node-based discretization)

For the solution of the driven-cavity flow, since the
diffusion term is treated implicitly, each time-step
involves four calls to the conjugate gradient solver –
three for the momentum equations and the other for
pressure. The performance results for the pressure
solver are shown in Fig. 12.

Figure 12: Performance of the Conjugate Gradient
algorithm for Navier Stokes

DISCUSSION

The solution cost for these algorithms is dominated
by memory accesses and therefore, the performance
of the algorithm is largely dictated by the memory
bandwidth of the architecture.

The nVidia GeForce 8800 GPU has a rated memory
bandwidth of 81GB/sec and so it would be expected
to achieve roughly 10 Gflops for basic math
operations and 2-5 GFlops for the sparse matrix
operations. Since up to four graphics processors can
be placed on a single motherboard, this could result

in almost an order of magnitude performance
increase over currently available commodity CPUs.

Owing to the streaming nature of the hardware,
graphics processors have clearly demonstrated the
ability to act as very efficient and cost-effective math
co-processors for problems involving a large amount
of numerical effort.

ACKNOWLEDGEMENTS

Partial financial support for this work was provided
by the Office of Naval Research (Grant N00014-01-
1-0267), the Air Force Office of Scientific Research
(Grant FA9550-04-1-0023) and the National Science
Foundation (Grant CTS-0522089).

REFERENCES

[1] Owens, J., Luebke, D., Govindaraju, N., Harris,
M., Kruger, J., Lefohn, A., and Purcell, T. A
survey of general-purpose computation on
graphics hardware. Eurographics, August 2005,
pp. 21-55.

[2] Perot, J. B., and Subramanian, V. Discrete
Calculus methods for diffusion. J. Comput.
Phys., doi: 10.1016/j.jcp.2006.12.022, 2006.

[3] Menon, S. Using alternative hardware for
scientific calculations. Masters Thesis,
University of Massachusetts, Amherst, 2007.

[4] Chorin, A. J. Numerical solutions of the Navier
Stokes equations, Math. Comput. 22, 745
(1968).

[5] Temam, R. On the approximation of the Navier
Stokes equations using the projection method,
Arch. Rat. Mech. Anal. 32, 377 (1969)

[6] Chang, W., Giraldo, F., and Perot, J. B. Analysis
of an Exact Fractional Step method. J. Comput.
Phys. 180 (1), 2002, pp. 183-199.

[7] Perot, J. B. Analysis of the Fractional Step
method. J. Comput. Phys. 108 (1), 1993, pp. 51-
58

