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ABSTRACT 

Programmable graphics processors have achieved the 
distinction of being very efficient and cost-effective 
in terms of floating-point capacity, thereby making it 
an attractive option for scientific computing. In this 
paper, we discuss the implementation of the 
Conjugate Gradient iterative solver on a graphics 
processor. A Poisson equation is solved with the 
graphics processor on an unstructured three-
dimensional mesh and compared on a standard CPU 
implementation. The implementation has also been 
extended to solve the Navier-Stokes equations using 
the Fractional Step method. Using graphics 
processors as math coprocessors will greatly benefit 
applications, such as fluid-flow solvers, which 
require efficient hardware and software to solve large 
sparse systems. 

1. INTRODUCTION 

Today, Graphics Processing Units (GPUs) provide 
the most cost-effective means of floating-point 
computational capacity, driven primarily by the 
multi-million dollar gaming industry. More recently, 
the capability to program these units for specialized 
tasks has provided increased versatility and therefore, 
researchers have explored this architecture for more 
general-purpose use. With the advent of 32-bit 
floating-point capabilities on more recent 
architectures, the feasibility for scientific 
computation has become quite apparent. Moreover, 
the current trend of hardware for graphics processors 
is accelerating at ever-increasing rates, easily out-
performing conventional cache-based processors for 
applications with high arithmetic intensity [1]. 

The Single Instruction Multiple Data (SIMD) nature 
of almost all graphics applications is the primary 
reason why streaming architectures, like the one 
implemented on GPUs, are ideally suited for 
electronic games and multimedia. Most scientific 

applications operate on large arrays of variables, in a 
fashion that involves very minimal reuse of data – 
and are also well suited to the SIMD paradigm. 

Graphics hardware also benefits from the use of 
improved memory bandwidth technology, which is a 
critical factor for scientific applications that involve 
large sets of data. For instance, the sequential 
memory access bandwidth of a GeForce 6-series 
GPU (which costs about $50) is about 20 GB/sec, as 
opposed to 6 GB/sec for a Pentium 4.  Since 
scientific calculations are almost all memory bound 
this results in a direct improvement in algorithm 
performance.  A similar comparison can be made for 
random memory accesses (see Fig. 1). 

 

Figure 1: Memory bandwidth comparison 

The conjugate gradient algorithm is a common 
iterative method for solving large sparse matrix 
systems that exhibit the property of being symmetric 
and positive-definite.  Such systems frequently arise 
in the solution of discretized linear and non-linear 
partial differential equations such as the Poisson 
equation.  They also form a large portion of the CPU 
cost of numerous incompressible flow solvers, since 
the solution for pressure is basically a Poisson 

CFD2007, 15th Annual Conference of the 
CFD Society of Canada, Toronto, May 2007 



  

equation to ensure continuity. The algorithm 
primarily consists of three operations that must be 
highly efficient for the solution to be competitive in 
terms of CPU cost – reduction operations like a 
vector dot-product, the axpy operation (defined as y 
= y + α.x), and the sparse-matrix multiply operation. 

A practical example would be the solution to the 
steady-state homogenous heat-diffusion equation, 
given by:  

∇....q = 0, where q = - k∇Τ 

We implement this on an unstructured tetrahedral 
mesh using a classical finite-volume method, as well 
as a node-based Discrete Calculus approach [2].   

2. IMPLEMENTATION 

Although the hardware is well-suited to the afore-
mentioned application, implementation of the 
algorithm involves mapping it to an unusual 
programming model that is obviously tailor-made for 
the graphics model.  This requires a fairly thorough 
understanding of the underlying hardware and its 
limitations.   While this paradigm is explained herein, 
we have implemented a subset of the BLAS routines 
on the GPU in a manner that could be used by any 
scientific programmer.  

2.1 The Graphics Pipeline 

Graphics processors are designed with intention of 
accelerating the process of drawing three-
dimensional geometric primitives to the screen in the 
form of projected two-dimensional images. The 
modern graphics pipeline involves several stages 
through which this is achieved:  

The vertex processing stage: Geometric primitives 
are defined by vertex data, which must be 
appropriately transformed to the two-dimensional 
screen by applying an appropriate transformation 
matrix. Since vertex data is frequently manipulated 
for sophisticated effects, this stage of the pipeline is 
fully programmable. 

The rasterization stage: This is a non-
programmable stage that essentially fills transformed 
geometric primitives with ‘fragments’, which are 
essentially pixels that do not contain any color 
information. 

The fragment processing stage: Fragments that are 
generated by the rasterization stage are passed into 
the programmable fragment processor, which applies 
appropriate coloring/lighting calculations to 
determine the final pixel color-value. These pixels 
are then sent to the frame buffer for display. Due to 

large amount of pixel-processing steps required in 
graphics applications, modern graphics processors 
contain a large number of fragment processing units, 
which form the primary workhorse of the pipeline.  
For this reason, our scientific calculations primarily 
use the fragment processing units.   

2.2 Mapping algorithms to the GPU 

Graphics processors use textures to store data in 
memory. Textures are usually two-dimensional 
bitmaps that are wrapped onto polygon faces to 
achieve realistic effects.  In this case, they form an 
analogy to arrays in conventional memory layouts. 
However, this also means that appropriate 
transformations must be applied to one-dimensional 
CPU arrays to map them onto two-dimensional GPU 
equivalents. One- and three-dimensional texture 
layouts are also available on the GPU, but since the 
two-dimensional layout is closely related to the 
pattern of fragments generated by the rasterizer, it is 
much more efficient.  Therefore, each scientific array 
is now laid out as a rectangle and defined by a width 
and a height rather than a single-dimensional length.  

While a one-dimensional array of 12 items should 
probably be laid out as a 3x4 or 4x3 two-dimensional 
array, the mapping of a one-dimensional array of 13 
items into a 2D equivalent is less obvious. In such 
cases, padding the array with extra elements is 
necessary.  Consideration must also be given to the 
nature of the layout, which the GPU requires to be 
either square or rectangular. Square layouts are 
additionally required to a power-of-two length in 
each dimension, which means that the amount of 
padding would be too large for larger array lengths.  
Since the padded elements are also processed by the 
GPU, the overall performance would also drop in 
proportion to the amount of padding.  Rectangular 
layouts, however, are less restrictive in this regard. 

 

Figure 2: Mapping algorithms to the graphics 
pipeline  



  

The computational kernels of the algorithm are 
programs that are written for the vertex and fragment 
processors that perform an operation identically on 
all entities being processed. By defining a viewport 
with dimensions equal to that of the array and 
drawing an equally sized rectangular region on the 
screen, the rasterizer generates a fragment for each 
element in the output array and applies the kernel 
programs to them. The results of the computation can 
then be redirected to another array which is attached 
to the frame buffer. In doing so, these computed 
results can be used as inputs to a subsequent 
operation, thereby establishing a feedback 
mechanism (this is represented in Figure 2). 

2.2.1 Reduction 

Reduction operations operate on large streams of data 
to produce a single result. Examples include sum, 
vector dot-product, min and max. Since GPUs are 
optimized for read-only / write-only operations in 
memory, such operations involve acting on adjacent 
data for each fragment and rendering to another 
rectangular array of half its length in each dimension. 
In doing so, each element in the output array 
corresponds to the local sum of four elements in the 
input array; which is also beneficial because it helps 
to minimize errors due to round-off.  This process is 
then repeated in subsequent passes until a small size 
results.   After the array is reduced, one possible 
approach is to padded the reduced array with zeros to 
the next appropriate power-of-two dimension, and 
finally reduced to a single value, as shown in Fig. 3. 
This is done to ensure reduction operations on 
arbitrarily- sized rectangular textures. 

 

Figure 3: Reduction on arbitrary size rectangular 
textures with the padding approach 

Another approach for the final reduction step is to 
read the reduced array back to the CPU and complete 
the summation there, since the CPU is relatively 
more efficient for smaller sets of data. This proves to 
be a more efficient approach. 

Padding the array with zeros does not interfere with 
reduction operations like the sum and the dot-
product, but is an issue when operations like a min or 
a max is considered; since zero might mistakenly be 
reported as the min / max value of the array. Thus, 
for min / max operations, the array is padded with the 
first element of the array. 

2.2.2 Axpy (y = y + α.x) 

The add-and-multiply operation is implemented on 
the GPU with relative ease, since both the ‘y’ and ‘x’ 
vector-fields are sized equally in both dimensions, 
and a 1:1 correspondence exists for all fragments. 
The operation involves a sequentially accessed 
memory-fetch from either array, followed by a write 
operation to the output attached to the frame buffer.  

2.2.3 Sparse-Matrix Multiply 

The sparse-matrix multiply in the conjugate gradient 
loop is decomposed into multiple sparse matrix 
operations that act on variables located either on 
faces or cells in the unstructured tetrahedral mesh for 
the finite volume discretization scheme, or at nodes 
for the node-based discrete calculus approach.  In the 
case of a finite volume technique, the discretized 
form of the steady-state homogenous heat-diffusion 
equation is given as: 

D  ( - k G TC)  =  0  

where G and D are the discrete gradient and 
divergence operators, respectively. 

The mesh-connectivity information is maintained in 
separate lists that establish the relationship between 
various entities (for example, cell-face, cell-node, or 
face-edge connectivity, etc).  
 

 
 

Figure 4: Sparse-matrix multiply operations 

The discrete operator is represented as a fragment 
program that performs random-access memory-
fetches from a source-field based on indices 
(represented as 2D texture coordinates) using the 
appropriate connectivity-list, and writes to the 
corresponding output fragment in the resultant field. 
In a cell-based finite-volume discretization for 
example, a discrete gradient operator takes values 
located at cell centers to compute the flux at cell-
faces. A discrete divergence operator does the 
opposite – it takes values located at cell-faces to 
compute the divergence of the variable at the cell-
centers.  

A graphics processor can efficiently handle “gather” 
operations (a = x[i]), whereas an indirect write to 
memory, i.e., a “scatter” operation (a[i] = x) is 
not natively supported. The discrete divergence 

m x n 
1 x 1 

Source 
Entity 
Field 

Discrete 
Operation 

Div, Grad 

Connectivity 
Lists 

Result 
Field 



  

operation is inherently a scatter operation when 
implemented on the CPU, since it shares the same 
mesh-connectivity structure as the gradient. On the 
graphics processor however, it must be reformulated 
as a gather operation and therefore requires a new 
connectivity structure to be calculated (once). 

The node-based discretization approach assumes a 
control volume which surrounds each node in the 
mesh, called dual-mesh cells. For more details on the 
node-based discrete-calculus approach, refer to 
reference [2]. An interpolation operator takes vector 
values located at cell-centers to compute an 
interpolated flux located at faces, while the 
complementary integration operator computes an 
integrated vector value at cell-centers from flux 
values at faces. Similar approaches can be taken to 
construct other operators such as the discrete curl, for 
instance. 

2.2.4 Boundary conditions 

Incorporating boundary conditions in the solver is a 
slightly more involved procedure. Boundary 
conditions fall under the category of a scatter 
operation, since the specification of a Dirichlet or 
Neumann condition involves writing to specific 
locations in memory. 

The workaround in this case would be to use the 
vertex-processor for the scatter operation. By 
drawing a vertex to a specific coordinate location in 
the framebuffer and specifying the boundary value 
along with it, the effect of a scatter operation is 
achieved. However, as individual points have to be 
drawn using OpenGL library calls from the CPU; this 
proves to be a major bottleneck especially for 
geometry which involves a large ratio of boundary to 
interior entities. This is alleviated to a small extent if 
the boundary coordinates and their associated values 
are pre-computed on the CPU and stored in a vertex 
buffer, which resides on GPU memory. Unless the 
boundary conditions are time-varying, this proves to 
be a fairly efficient approach. Nevertheless, it is only 
a fraction of the efficiency achieved by the data-
streaming paradigm. For details on this 
implementation, refer [3]. 

2.2.5 Navier-Stokes implementation 

The conjugate gradient algorithm described above 
has also been used to implement an unsteady, 
incompressible Navier-Stokes solver on the graphics 
processor using the classical Fractional-Step 
approach. This method was first introduced 
independently by Chorin [4] and Temam [5] as a 
practical approach to the solution of incompressible 
fluid-flow. The approach has a few major drawbacks, 
including the fact that it exhibits poor temporal 

accuracy (first order accurate). However, we will 
focus on hardware efficiency rather than accuracy at 
this point, since other methods which overcome this 
difficulty exist, and can be easily incorporated [6]. 

As pointed out by Perot [7], the discretized 
incompressible Navier Stokes equations can be 
viewed as a block LU decomposition in the form: 
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where G and D are the discrete gradient and 
divergence operators mentioned earlier, and A is a 
sub-matrix whose structure depends on the form of 
temporal and spatial discretization. A typical 
structure for A (such as the one incorporated here), is 
to treat diffusion implicitly for stability and an 
explicit advection term along with a temporal term if 
the flow is unsteady. This system can be decomposed 
further to yield the fractional step method: 
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This leads to the estimation of an intermediate 
velocity v* which is non-divergence free, and must be 
corrected for pressure at time n by solving a Poisson 
equation. 

The chosen domain in this case is a three-
dimensional driven-cavity flow with typical 
conditions of no-slip and zero pressure-gradient 
normal to the walls.  

3. RESULTS 

The algorithms were tested with an nVidia 6600GT 
graphics card, and benchmarked against an AMD 
Athlon64 running at 1.81 GHz and a Front-Side Bus 
of 400 MHz. OpenGL was used as the underlying 
graphics-API, as an interface between the application 
and the underlying hardware. 

Figure 5 compares the performance on both 
processors for a sum-reduction operation on a large 
array of data, showing GFlops as a function of 
problem-size. The plot exhibits typical behavior, with 
the GPU (triangle-symbols) outperforming the CPU 
(square-symbols) on substantial problem-sizes, by a 
factor of about 350%.  



  

 

Figure 5: Sum-reduction comparison 

Figure 6a and 6b shows a similar plot for a vector 
dot-product and axpy operation respectively. The dot-
product also achieves a speed-up of about 350%, 
while the axpy operation achieves a speed-up of 
about 500% on problem sizes of interest. For a 
nVidia GeForce 6600GT, the sequential memory-
access bandwidth is specified as 16GB/sec.  One half 
of this bandwidth is for reading and the other half for 
writing.  This translates into 2 GigaWords / sec 
(single precision) read and/or write. The sum and 
axpy operations confirm that the GPU can operate at 
close to this peak performance.  For the reduction 
operations, peak performance requires vector lengths 
of 100k or larger.  The simpler operations like the 
axpy can perform at peak speeds for array sizes 
down to as small as 10k. 

The drop in performance for the CPU is clearly 
evident for larger problem sizes, which confirms the 
observation that it is poorly suited for scientific 
applications (which tend to involve large data sets).. 

 

Figure 6a: Vector dot-product comparison 

 

Figure 6b: Axpy comparison 

Figure 7a and 7b shows the sparse-matrix-multiply 
comparison for a gradient and integration operation. 
The interpolation operator involves two dot-products 
and an addition operation for each face, as opposed to 
a single subtraction for the gradient. This would 
explain the higher performance. Owing to the random 
texture-fetching nature of the sparse matrix 
multiplication operation, the GPU performance  
drops with an increase in problem-size, but the GPU 
still outperforms the CPU by a factor of about 250%. 
Random memory accesses on the GPU are roughly 6 
times slower than sequential access and so sparse 
matrix operations are also slower by roughly this 
factor. This can be alleviated to a small extent by a 
bandwidth reduction process that re-numbers the 
connectivity indices; thereby allowing increased 
memory-accesses within the cache of the processor. 

 

Figure 7a: Gradient operator comparison 



  

 

Figure 7b: Integrate operator comparison 

When a full scientific algorithm is implemented using 
these GPU operators the performance is dominated 
by sparse matrix multiplies. Figure 10 shows the 
computation-time per CG iteration comparison 
between both processors for the Conjugate Gradient 
algorithm for various problem-sizes, using the finite-
volume cell-based discretization. The computation is 
performed on a realistic geometry (a crankshaft) for 
various mesh-resolutions, shown in Fig. 8. Dirichlet 
boundary conditions are specified at the ends of the 
crankshaft, while the rest of the walls are insulated. 
Typical contours for temperature are shown in Fig. 9. 

 
Figure 8: Crankshaft mesh geometry used for the 

computation 

 

Figure 9: Temperature contours along the crankshaft 

 

Figure 10: Performance of the Conjugate Gradient 
algorithm for the Poisson Solution (cell-based finite-

volume discretization) 

A similar result is obtained for the node-based 
discrete-calculus approach shown in Fig. 11, where 
the time per iteration is compared for both the 
architectures. Clearly, the difference in computation 
cost is significant for larger problem sizes, with the 
graphics processor outperforming the CPU by a 
factor of about 2. 



  

 

Figure 11: Performance of the Conjugate Gradient 
algorithm (node-based discretization) 

 

For the solution of the driven-cavity flow, since the 
diffusion term is treated implicitly, each time-step 
involves four calls to the conjugate gradient solver – 
three for the momentum equations and the other for 
pressure. The performance results for the pressure 
solver are shown in Fig. 12.  

 

Figure 12: Performance of the Conjugate Gradient 
algorithm for Navier Stokes 

DISCUSSION 

The solution cost for these algorithms is dominated 
by memory accesses and therefore, the performance 
of the algorithm is largely dictated by the memory 
bandwidth of the architecture. 

The nVidia GeForce 8800 GPU has a rated memory 
bandwidth of 81GB/sec and so it would be expected 
to achieve roughly 10 Gflops for basic math 
operations and 2-5 GFlops for the sparse matrix 
operations.  Since up to four graphics processors can 
be placed on a single motherboard, this could result 

in almost an order of magnitude performance 
increase over currently available commodity CPUs. 

Owing to the streaming nature of the hardware, 
graphics processors have clearly demonstrated the 
ability to act as very efficient and cost-effective math 
co-processors for problems involving a large amount 
of numerical effort. 
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