

Discrete Calculus Methods and their Application to Fluid Dynamics Blair Perot

Theoretical and Computational Fluid Dynamics Laboratory

October 6, 2011

Woudschoten Conference Oct. 2011

Mathematical Tools Order of Accuracy Stability Consistency

Physical Requirements Conservation (mass, momentum, total energy) Secondary Conservation (kinetic energy, vorticity, entropy) Unphysical Modes (pressure) Wave propagation (direction) Eigenmodes/Resonance

Why do some methods capturephysics well?They use exact discretization

What do they have in common? All are Discrete Calculus Methods

Can you make a numerical method so that is mimetic from its design? Yes (I think)

Discretization

Take a continuous problem to a finite dimensional one.

Discrete Calculus: Part 1

Exact Discretization

$$\frac{\partial a}{\partial t} + \nabla \cdot \mathbf{b} = \mathbf{0} \quad \Longrightarrow \quad \left[\mathbf{A} \quad \mathbf{B} \right] \left(\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right] = \vec{\mathbf{r}}$$

Infinite Dimensional Finite Dimensional

Partial Differential Eqn. Matrix Problem

Basic unknowns are integral quantities. Collect infinite data into finite groups.

Discrete Calculus: Part 2

Solution <u>requires</u> Approximation

 $\begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{pmatrix} \vec{\mathbf{a}} \\ \vec{\mathbf{b}} \end{pmatrix} = \vec{\mathbf{r}} \implies \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \vec{\mathbf{a}} \\ \vec{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \vec{\mathbf{r}} \\ \mathbf{0} \end{pmatrix}$

Underdetermined

Unique Square

Relate discrete unknowns to each other. This relation is a material law. Also related to an dual mesh interpolation. Also related to inner products

Implications

Exact Discretization means that:

- Calculus is exact.
- Physics is exact.
- Method is mimetic.

Discrete Solution Requires:

- Approximation of material laws.
- Interpolation between meshes.
- Assumptions about the solution.

Example: Heat Equation

 $\frac{\partial T}{\partial t} = \alpha \nabla^2 T$

Figure out what should NOT be approximated and what is already an approximation (Tonti).

Heat Eqn: Fully Separated

Heat Equation

 $\frac{\partial i}{\partial t} = -\nabla \cdot \mathbf{q}$

 $\mathbf{g} = \nabla T$

- Conservation of Energy (Physics)
- $i \approx \rho CT$ Perfectly Caloric Material (Mat.)
- $\mathbf{q} \approx -\mathbf{k}\mathbf{g}$ Fourier's Heat Flux Law (Mat.)
 - Def. of Gradient (Math)
- Discretize Physics and Math exactly.
 Approximate Material laws using interpolation.

Step 1

Exact Discretization

$I^{n+1}_{ ilde{c}}$.	$-I_{\tilde{c}}^{n} =$	$-\sum \bar{Q}^{out}_{\tilde{f}}$
		faces

Gauss' Theorem (with time) Like FV: Not very original.

$$I_{\tilde{c}}^{n+1} = \int_{\Omega_{\tilde{c}}^{n+1}} i dV \qquad \overline{Q}_{\tilde{f}}^{out} = \int_{t^n}^{t^{n+1}} dt \int_{\partial \Omega_{\tilde{f}}} \mathbf{q} \cdot \mathbf{n}^{out} dA$$

$$g_{e}^{n+1} = \int_{v_{1}}^{v_{2}} \mathbf{g} \cdot d\mathbf{l} |^{n+1} = \int_{v_{1}}^{v_{2}} \nabla T \cdot d\mathbf{l} |^{n+1} = T_{v_{2}}^{n+1} - T_{v_{1}}^{n+1}$$

Math: still exact

Exact Discrete System $\frac{\partial i}{\partial t}$ g_e^{n+1} ∇T g T^{n+1}

- Exact
- Over-determined
- Uncoupled
- Unknowns on different meshes

Step 2

Step 3

Vertex Centered Mimetic

Approximation Part

13

$\begin{bmatrix} \mathbf{I} & \mathbf{D} & 0 & 0 \\ \mathbf{I} & 0 & 0 & -\mathbf{M}_{C} \\ 0 & 0 & \mathbf{I} & -\mathbf{G} \\ 0 & \mathbf{I} & \frac{k\Delta t}{2} \mathbf{B}^{n+1} & 0 \end{bmatrix} \begin{bmatrix} I_{\tilde{c}}^{n+1} \\ \overline{Q}_{\tilde{f}} \\ g_{\tilde{f}}^{n+1} \\ T_{v}^{n+1} \end{bmatrix} = \begin{bmatrix} I_{\tilde{v}}^{n} \\ 0 \\ 0 \\ \frac{k\Delta t}{2} \mathbf{B}^{n} g_{e}^{n} \end{bmatrix}$

 $\mathbf{M}_{C}T_{v}^{n+1} - I_{\tilde{c}}^{n} = \mathbf{D}(\frac{\Delta tk}{2}\mathbf{B}^{n+1})\mathbf{G}T_{v}^{n+1} + \mathbf{D}(\frac{\Delta tk}{2}\mathbf{B}^{n})\mathbf{G}T_{v}^{n}$

- Single unknown (T at vertices).
- Looks like no dual mesh was used.
 B is Hodge * operator.

Other Possibilities

- Mesh: Use polygons as the primary mesh. (quad/hex meshes, particle methods, SOM)
- Approx: Use other basis functions for interpolation. (Rational polynomials, Natural Neighbors, Fourier)
- Exact: Use different exact discretizations (FE, Keller/Priessman Box Schemes)

Cell Centered Mimetic

Q

- Cell Centered
- Median dual mesh
- Raviart-Thomas for Q

 $\overline{I_c^{n+1}} \approx M_c C_c \overline{T_{\tilde{c}}}$ $i \approx \rho \overline{CT}$ $\frac{\Delta t}{2} \left(g_{\tilde{e}}^{n+1} + g_{\tilde{e}}^{n} \right) \approx -\mathbf{A}_{1/k_c}^{n+1} \overline{Q}_f$ $q \approx -kg$

Cell System

0 n+1 I_c^n D \mathbf{O} 0 0 $-\mathbf{M}_{C}$ \mathbf{O} *n*+1 0 G \mathbf{O} \mathbf{O} $g_{\tilde{e}}^{\pi}$ n+1 $\frac{\Delta t}{2}$ T^{n+1} A

$$\begin{bmatrix} \mathbf{M}_{C} & \mathbf{D} \\ -\mathbf{G} & -\frac{2}{\Delta t} \mathbf{A}_{1/k_{c}}^{n+1} \end{bmatrix} \begin{pmatrix} T_{\tilde{c}}^{n+1} \\ \overline{Q}_{f} \end{pmatrix} = \begin{pmatrix} I_{c}^{n} \\ g_{\tilde{e}}^{n} \end{pmatrix}$$

Symmetric system of unknowns
Not reducible

17

Comparison

Mimetic 10x more accurate or 1/10th cost.

Fluid Example - Droplets

- Moving Mesh Unstructured Surface Tension

Example – 3D Droplets

Summary

- Exact discretization (or 2 step construction) leads to mimetic methods.
- Place numerical approximations with the physical approximation.
- Discrete Calculus analysis is accessible to all computational scientist. (Gauss' Theorem).
- Discrete Calculus Methods are not a type of numerical method. The approach can produce <u>some</u> FV, FE, FD, and other methods.

www.ecs.umass.edu/mie/tcfd/Publications.html

