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Context

Mathematical Tools
Order of Accuracy
Stability
Consistency

Physical Requirements

Conservation

(mass, momentum, total energy)
Secondary Conservation

(kinetic energy, vorticity, entropy)
Unphysical Modes (pressure)
Wave propagation (direction)
Eigenmodes/Resonance



Many Mimetic Methods

O Staggereq

Nedelec FE

Staggered Mesh

Support

Operators

Methods
Keller Box
Schemes

Methods that capture physics well.



Why ?

Why do some methods capture

physics well? They use exact discretization

What do they have in common?
All are Discrete Calculus Methods
Can you make a numerical method
so that is mimetic from its design?
Yes (I think)




Discretization

My

Take a continuous §
problem to a finite |
dimensional one.



Discrete Calculus: Part 1

Exact Discretization

(ay
@1V.b=0 == (A B| _|=T
b
\M/
Infinite Dimensional Finite Dimensional

Partial Differential Eqn.  Matrix Problem

Basic unknowns are integral quantities.



Discrete Calculus: Part 2

Solution requires Approximation

A B]/a\ ) ‘A Bl(a) (r)
N =f |:> =
b, C DJj\b) \0,

Underdetermined Unique Square

Relate discrete unknowns to each other.
This relation is a material law.
Also related to an dual mesh interpolation.



Implications

Exact Discretization means that:
« Calculus is exact.
* Physics Is exact.
« Method is mimetic.

Discrete Solution Requires:
- Approximation of material laws.
- Interpolation between meshes.
« Assumptions about the solution.



Example: Heat Equation

2
S =aVT
o(pCT) _ = Conservation of Energy
- ——VQ
g = —kVT Fourier's Heat Flux Law

Figure out what should NOT be approximated and



Heat Eqn: Fully Separated

Heat Equation

g—i - -V q Conservation of Energy (Physics)
i ~ T Perfectly Caloric Material (Mat.)
g~-—-xQ Fourier’s Heat Flux Law (Mat.)
g=VI Def. of Gradient (Math)

®* Discretize Physics and Math - exactly.
* Approximate Material laws - using interpolation.
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Exact Discretization

|0 = _Z @9‘“ Gauss’ Theorem (with time)
¢ ‘ Like FV: Not very original.

faces

1= [ idv — nfdt j g-n*'dA
o tn

n+1_-" g- dl n+l__ j‘ \vauel ‘n+1 -I-n+1 -I-n+1

Math: still exact



Exact Discrete System

(0
a=-vV.a__f1 DO O Qr | _(1:
g=VT 00 1 GJgm| (0

\Tvn+1/

« Exact

 Over-determined

- Uncoupled

« Unknowns on different meshes
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Vertex Centered Mimetic

® (C1l) Vertex Centered
e (C2) Median dual mesh

i n+1
i~ CT 11 ~MCT,
q — g Qf’ ~ kgt (Bn+1g2+1_|_Bng£)

Approximation Part
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Solvable Vertex System

| D 0 o 1Yy (1
I 0 0 -M.||Q| | O
00 I —Gigm|| O
0 1 5B™ 0 J{107) (B9,

M.T " —1] =D& B"™)GT,"" + D(& B")GT,"

* Single unknown (T at vertices).
 Looks like no dual mesh was used.
- B iIs Hodge * operator.



Other Possibilities

® Mesh: Use polygons as the primary

mesh.
(quad/hex meshes, particle methods, SOM)

® Approx: Use other basis functions
for interpolation.

(Rational polynomials, Natural Neighbors,
Fourier)

& Exact: Use different exact
discretizations
(FE, Keller/Priessman Box Schemes)
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Cell Centered Mimetic

Q
— e Cell Centered
¢ Median dual mesh
g ® Raviart-Thomas for Q
n+1
1~ T Ic NMCCCTC
,O
‘ n+1

~— (9, +9§)z—A?/11C_?f




Cell System

1 D 0 0 f|g+1\ ( " A
| 0 0 M. | Q 0
0 O | -G || go* |0
0 Al 51 0 \TM) (497,

_MC D ] T6n+1 I:
. -G & A?/E . Q; B Js
« Symmetric system of unknowns




Comparison

i
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Mimetic 10x more accurate or 1/10th cost.




Fluid Example - Droplets

¢ Moving Mesh
¢ Unstructured
¢ Surface Tension
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Example — 3D Droplets

¢ Moving Mesh
¢ Large distortions
¢ Complex BCs
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Summary

® Exact discretization (or 2 step construction)
leads to mimetic methods.

® Place numerical approximations with the
physical approximation.

e Discrete Calculus analysis iIs accessible to all
computational scientist. (Gauss’ Theorem).

e Discrete Calculus Methods are not a type of
numerical method. The approach can
produce some FV, FE, FD, and other methods.

www.ecs.umass.edu/mie/tcfd/Publications.html
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