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Context 
 

Mathematical Tools 
 Order of Accuracy 
 Stability 
 Consistency 
 
 
Physical Requirements  
 Conservation   
  (mass, momentum, total energy) 
 Secondary Conservation  
  (kinetic energy, vorticity, entropy) 
 Unphysical Modes  (pressure) 
 Wave propagation  (direction) 
 Eigenmodes/Resonance 
 

2 



Many Mimetic Methods 
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Nedelec FE 

Keller Box 
Schemes 

Support 
Operators 
Methods 

Staggered Mesh 

Methods that capture physics well. 

HO Staggered 



Why ? 
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Why do some methods capture 
physics well? 
 
What do they have in common? 
 
Can you make a numerical method 
so that is mimetic from its design? 

Yes (I think) 

All are Discrete Calculus Methods 

They use exact discretization 



Discretization 
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Take a continuous 
problem to a finite 
dimensional one. 



Discrete Calculus:  Part 1 
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Exact Discretization 

Partial Differential Eqn.     Matrix Problem 

Basic unknowns are integral quantities. 
Collect infinite data into finite groups. 
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Discrete Calculus:  Part 2 
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Solution requires Approximation 

Underdetermined      Unique Square 

Relate discrete unknowns to each other. 
This relation is a material law.  
Also related to an dual mesh interpolation. 
Also related to inner products 
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Implications 
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Exact Discretization means that: 
• Calculus is exact. 
• Physics is exact. 
• Method is mimetic. 

Discrete Solution Requires: 
• Approximation of material laws. 
• Interpolation between meshes. 
• Assumptions about the solution. 



Example:  Heat Equation 
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Figure out what should NOT be approximated and 
what is already an approximation (Tonti). 
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Conservation of Energy 
 
 
Fourier’s  Heat Flux Law 



Heat Eqn: Fully Separated 
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Discretize Physics and Math - exactly. 
Approximate Material laws - using interpolation. 
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Conservation of Energy (Physics) 

 

Perfectly Caloric Material  (Mat.) 

 

Fourier’s  Heat Flux Law  (Mat.) 

 

Def. of Gradient (Math) 

Heat Equation 
 

Step 1 



Exact Discretization 
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Gauss’ Theorem (with time) 

Like FV: Not very original. 
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Exact Discrete System 
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• Exact 

• Over-determined  

• Uncoupled 

• Unknowns on different meshes 
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Step 2 



Vertex Centered Mimetic 
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(C1) Vertex Centered 
(C2) Median dual mesh 
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Approximation Part 



Solvable Vertex System 
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• Single unknown (T at vertices). 

• Looks like no dual mesh was used. 

• B is Hodge * operator. 
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Other Possibilities 
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Mesh: Use polygons as the primary 
mesh. 

  (quad/hex meshes, particle methods, SOM) 
 

Approx: Use other basis functions 
for interpolation. 

  (Rational polynomials, Natural Neighbors, 
Fourier) 

 

Exact: Use different exact 
discretizations 

  (FE, Keller/Priessman Box Schemes) 
 



Cell Centered Mimetic 
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Cell Centered 
Median dual mesh 
Raviart-Thomas for Q 
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Cell System 
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• Symmetric system of unknowns 

• Not reducible 
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Comparison 
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Mimetic 10x more accurate or 1/10th cost. 



Fluid Example - Droplets 
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Moving Mesh 
Unstructured 
Surface Tension 
 



Example – 3D Droplets 
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Moving Mesh 
Large distortions 
Complex BCs 
 



DNS 
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Summary 
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Discrete Calculus analysis is accessible to all 
computational scientist. (Gauss’ Theorem). 
 
 
 

Place numerical approximations with the 
physical approximation. 

 
Exact discretization (or 2 step construction) 
leads to mimetic methods. 

Discrete Calculus Methods are not a type of 
numerical  method.  The approach can 
produce some FV, FE, FD, and other methods. 
 

www.ecs.umass.edu/mie/tcfd/Publications.html 

http://www.ecs.umass.edu/mie/tcfd/Publications.html
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