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ABSTRACT A generalization of the Harlow & Welch (1965) staggered mesh method to two-
dimensional unstructured meshes is presented. With certain choices of the interpolation
operators, it is shown that this method can be recast as a classic finite volume method using a
single set of non-overlapping control volumes and collocated variables. When the divergence
form of the Navier-Sokes equations are discretized using the unstructured staggered mesh
method the resulting equations are equivalent to a classic finite volume method for the velocity
vector. When the rotational form of the Navier-Stokes equations are discretized using the
unstructured staggered mesh method the resulting equations are equivalent to a classic finite
volume method for the vorticity vector.
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1. Introduction

The Cartesian staggered mesh method has a numioesitbématical properties
that make it a popular choice for simulations aimpressible fluids. In particular,
the method does not have spurious ‘pressure moded’ does not require
stabilization or damping terms to control unphykicemall-scale pressure
fluctuations. In addition, the method is known tnserve mass, momentum, total
energy, kinetic energy and vorticity. The latt@otconservation properties are not
found in generic control volume approaches andparécularly important in direct
and large eddy simulations of turbulence where dhscade of turbulent kinetic
energy (or enstrophy) from large to small scalasvfoe versa) is critical to the
overall predictions of the turbulence behavior.



The success of the Cartesian staggered mesh metigidally developed by
Harlow & Welch [HAR 65] has motivated the search fgeneralizations of the
method to unstructured meshes. While such a gegaien is a non-trivial
exercise, the unstructured staggered mesh methoé@orsching [AMI 81], and
Nicolaides [NIC 93] have demonstrated many of tkieaetive properties of the
Cartesian staggered mesh method by taking advantégine fact that every
unstructured mesh has a locally orthogonal dualhmeshe Voronoi tesselation.
Chou [CHO 97] has shown the connection of the unsired staggered mesh
methods to nonconforming finite element methods. this paper we discuss the
direct connection with classic finite volume method |t is via this connection with
classic finite volume methods that the hithertanvastigated conservation properties
of unstructured staggered mesh methods can beagedlu

N

Mesh
Dual Mesh.

Figure 1. Two dimensional unstructured mesh and the dual Voronoi mesh.

2. Analysis of the Divergence Form

The unstructured staggered mesh discretizationiniply a way of forming
discrete difference operators. It is actually peledent of the equations to which it
is applied. Hence, different discretizations oé tNavier-Stokes equations are
possible depending on which form of the equatiaesdiscretized. In this section,
we will look at unstructured staggered mesh diszaions of the divergence form of
the Navier-Stokes equations.

% OQuu)=-0p O (Ow Ou") [1]

Discretizations based on the divergence form of éheations are of interest
because they are able to discretely conserve moment While momentum
conservation is a trivial consequence of a clakfilmiée volume method, it is not an
obvious trait of staggered mesh methods. Thiseisabse the staggered mesh
methods only updates the normal velocity componextsell faces, tangential



velocity components are interpolated not evolvatwill be shown that with certain
choices of the interpolation operators, the staggjeanesh update of face normal
velocities is directly equivalent to a classic ténivolume method which updates the
velocity vector at cell centers.

2.1 Discretization of the Divergence Form

The normal vector at each face is assumed to [frmint cell C1 to cell C2. At
boundary faces the normal vector is assumed ta poinof the domain and cell C2
is a virtual cell located at the domain boundaryhe discrete equation for the
evolution of the normal velocity component is tlggven by,
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discretization of the diffusion term evaluated acle cell, V_ is the volume of each
cell, A, is the face areaV, is the distance between neighboring cell circurtersn
and W/ is the distance between the face circumcenterth@ctell circumcenter.
Note thatu=uln, is the normal velocity component at each cell face G is the
normal velocity component that points out of a ijpatar cell. Similarly n, is the
normal vector pointing out of a particular cell.

2.2 Reformulation as a Classic Control Volume Scheme

The reformulation of the divergence form is accdsfmdd by multiplying each
evolution equation for the face normal velocity gament (Eqgn. [2]), by the face
normal vector, and summing over all the faces & ¢bmputational domain. This
results in the following equation,
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The goal is then to recast this into a form thatki like a summation over
control volume cells. Recognizing that, =W, +W,, and that W, =0at



boundary faces, and also noting that at boundacgsfap_, =p,, [3] can be
rewritten as a summation over cells.
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This can be further simplified using three idenstiderived from Gauss’
divergence theorem. Gauss’ Divergence Theoremriaarhitrary bounded volume
and a vector quantitiyis,

iD ddv = a{)f (hdA [5]

where Q is the volume andQ is the boundary of the volume with unit normal
vector horiented outwards from the volume. We are actuiallgrested in convex
polygonal volumes where Gauss’ Theorem simplifigs t
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If f is a nonzero constant vector then n,A, =0. If f =(x[a)b wherea andb

are nonzero constant vectors anid the position vector with an origin located fz t
cell circumcenter then it follows from [6] that intwo-dimensions
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Y n,n,W.A =V_ wherel is the identity matrix. Finally, if =(alx)u whereu

is the velocity vector ana is an arbitrary nonzero constant vector, then &aus
Theorem gives,
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The gradient of the position vector is the identitgtrix (x,; =93), and since
is an arbitrary vector
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where (is the outwards normal component of the velocityhatcell faces. This is
an exact equation for polygonal volumes. If weuase that the velocity field is a
constant function (a first order approximationgntthe second term will be zero and
the integrals can be evaluated. In two dimensithis gives the relation,

cell cell
faces faces

uch = z aﬁfW(f?Af = z uan(f?Af [9]

The first two identities are geometric and they axact. The last expression
(Egn. [9]) is really not an identity, it is a firgirder approximation for the cell
velocity vector given the normal velocity comporgeat the cell faces. With these
geometric identities and this definition for thdl eelocity vector, [4] becomes,
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This equation is true for a collection of cellst ius also true for a single mesh
cell. The preceding analysis makes no distinctéento the number of cells.
Applying the previous definitions far, andd. we can therefore write that

n+l n cell cell cell
u -u faces faces

~ faces
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This is true for each mesh cell, and has the fofma elassic control volume
scheme for the velocity vector in the mesh celldt is important to note however,
that despite the apparent similarity there remairsubtle distinction from classic
control volume schemes. In the staggered mesbknshthe normal velocity
component u is the primary unknown ands a derived quantity. In classic control
volume schemesy. is the primary velocity unknown and the normal wéhp
component at faces is derived.

3. Analysis of the Rotational Form

In this section, we will look at unstructured staggd mesh discretizations of the
rotational form of the Navier-Stokes equations.

Z_Ltj_(u xw)=-0Op’~ Ox(vw) [12]

whereu is the velocity vectorg is the vorticity, p® = p+4ulli is the specific

dynamic pressure, ands the kinematic viscosity.  This equation assurtied
viscosity is constant, but it is otherwise equiwdldo other forms of the
incompressible Navier-Stokes equations. Varialdeosity diffusion can be still be



represented in rotational form but the extra temmwalving second derivatives of
viscosity) complicates the analysis unnecessarily.

This particular form of
the Navier-Stokes equations
is of interest because it
appears to be inherently
suited to the staggered mesh
discretization.  The classic
staggered mesh method can
be rearranged to look like a
discretization of [12]. It
will be shown that in two
dimensions the staggered N1
mesh update of face normal
velocities is directly
equivalent to a classic finite
volume  method  which
updates the vorticity at nodes
and where the control volumes are the dual meshnéepolyhedra.

Figure 2. Notation for a cell facein relation
to neighboring cells and nodes.

3.1 Discretization of the Rotational Form
Using the rotational form of the Navier-Stokes dupres, the normal component
of the face velocity is discretized as,
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where w, is the vorticity at a node in the direction outleé two-dimensional plane.

The face tangential points from node N1 to nodeddd is oriented 90 degrees
counterclockwise to the face normal vector. Thwyémtial velocity at the nodes in
the convection term is given by, =u, [t, .

3.2 Reformulation as a Control Volume for Vorticity

The reformulation of the rotational form is accorsipéd by dividing each
normal velocity evolution equation (Eqn. [13]) thetface area and then multiplying
by —1 if the face normal points clockwise with respto the node in question, and
finally summing over all the faces touching a sfieaiode.  The result will be
shown to be a control volume equation for the edsti In mathematical notation
we start with the following equation,
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where the normal vector at each face has been mhimsgoint in a direction
counterclockwise with respect to the node in goesti In addition, node n0O is the
node around which the summation is occurring andenoi is the other node
adjoining that face.

In this case, we use a discrete version of Stoket Theorem to simplify the
equations. Stokes theorem says that for an anpitraunded surface and vector
quantityf,

I(DXf)QdA:Jf fdL [15]

where S is the surface with nornml 0S is the boundary of the surface, and the
integration takes place in a counterclockwise dioecaround the boundary with
respect to the face normal. We are actually isteck in the planar polygonal
Veronio regions surrounding each node, it whictec@®kes Theorem simplifies to

node

Z(j(Oxf)dA =S n, OffdL [16]
s 0S¢

If we letf equal the velocity vector and make the first oraesumption that the
velocity is constant in the Veronio cell then weaib,

node
faces

w n /\ n = ZE lj\/\/ f [1:7]

where A | is the area of the Veronio cell surrounding theeyodnd the face normal
vectors are assumed to point in a counterclockdiigetion around the node.

In conjunction with [17] it is clear that for infer nodes, the pressure term is
identically zero. The net result is that [14] denwritten as,

0™~ el
AnT+ z (V(A)) |f Wf = z (Vnimni _Vnomno)wf /Af [18]



where the face vorticity flux is given ffyw) |, = +(w u , +w u_ ), andt, points

out of the Veronio cell. This is a discrete vensof the continuous two-dimensional
vorticity evolution equation,

agt)3+ OfQwur 0%(vw,) [19]

Again, it is important to note that despite the amept similarity there remains a
subtle distinction from classic control volume stiles. In the staggered mesh
scheme, the normal velocity component u is the gnymunknown andw, is the

derived quantity. In a classic control volume soke, w, would be the primary

unknown. So the staggered mesh scheme differm fao standard vorticity-
streamfunction or vorticity-velocity formulation ithe fact that (often complex)
boundary conditions on the vorticity are not regdir

4, Discussion

The primary result of the current work is that gixg@d mesh methods are not
just control volume methods applied on staggeradrobvolumes, but are directly
equivalent to classic collocated control volume hods. It was shown that
unstructured staggered mesh discretizations ofdihergence form of the Navier-
Stokes equations are equivalent to classic contmhlme method for the velocity
vector in mesh cells. Likewise, unstructured stagd mesh discretizations of the
rotational form of the Navier-Stokes equations erplivalent to classic control
volume method for the vorticity vector at mesh reodm Veronio cells). These
equivalencies imply that the method possessesitextaservation properties.
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