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ABSTRACT  A generalization of the Harlow & Welch (1965) staggered mesh method to two-
dimensional unstructured meshes is presented.  With certain choices of the interpolation
operators, it is shown that this method can be recast as a classic finite volume method using a
single set of non-overlapping control volumes and collocated variables.   When the divergence
form of the Navier-Stokes equations are discretized using the unstructured staggered mesh
method the resulting equations are equivalent to a classic finite volume method for the velocity
vector.  When the rotational form of the Navier-Stokes equations are discretized using the
unstructured staggered mesh method the resulting equations are equivalent to a classic finite
volume method for the vorticity vector.
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1.   Introduction

The Cartesian staggered mesh method has a number of mathematical properties
that make it a popular choice for simulations of incompressible fluids.  In particular,
the method does not have spurious ‘pressure modes’ and does not require
stabilization or damping terms to control unphysical small-scale pressure
fluctuations. In addition, the method is known to conserve mass, momentum, total
energy, kinetic energy and vorticity.  The latter two conservation properties are not
found in generic control volume approaches and are particularly important in direct
and large eddy simulations of turbulence where the cascade of turbulent kinetic
energy (or enstrophy) from large to small scales (or vice versa) is critical to the
overall predictions of the turbulence behavior.



The success of the Cartesian staggered mesh method originally developed by
Harlow & Welch [HAR 65] has motivated the search for generalizations of the
method to unstructured meshes.  While such a generalization is a non-trivial
exercise, the unstructured staggered mesh methods of Porsching [AMI 81], and
Nicolaides [NIC 93] have demonstrated many of the attractive properties of the
Cartesian staggered mesh method by taking advantage of the fact that every
unstructured mesh has a locally orthogonal dual mesh – the Voronoi tesselation.
Chou [CHO 97] has shown the connection of the unstructured staggered mesh
methods to nonconforming finite element methods.  In this paper we discuss the
direct connection with classic finite volume methods.   It is via this connection with
classic finite volume methods that the hitherto uninvestigated conservation properties
of unstructured staggered mesh methods can be evaluated.

2. Analysis of the Divergence Form

The unstructured staggered mesh discretization is simply a way of forming
discrete difference operators.  It is actually independent of the equations to which it
is applied.  Hence, different discretizations of the Navier-Stokes equations are
possible depending on which form of the equations are discretized.  In this section,
we will look at unstructured staggered mesh discretizations of the divergence form of
the Navier-Stokes equations.
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Discretizations based on the divergence form of the equations are of interest
because they are able to discretely conserve momentum.  While momentum
conservation is a trivial consequence of a classical finite volume method, it is not an
obvious trait of staggered mesh methods.  This is because the staggered mesh
methods only updates the normal velocity components at cell faces, tangential
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Figure 1.  Two dimensional unstructured mesh and the dual Voronoi mesh.



velocity components are interpolated not evolved.   It will be shown that with certain
choices of the interpolation operators, the staggered mesh update of face normal
velocities is directly equivalent to a classic finite volume method which updates the
velocity vector at cell centers.

2.1 Discretization of the Divergence Form
The normal vector at each face is assumed to point from cell C1 to cell C2.  At

boundary faces the normal vector is assumed to point out of the domain and cell C2
is a virtual cell located at the domain boundary.  The discrete equation for the
evolution of the normal velocity component is then given by,

f2c

f

2C1c

f

1Cff1c2c

f2c

f

2C1c

f

1Cf

n1n

ff

A)WW(A)pp(

A)WW(
t

uu
AW

ddn

ccn

+⋅+−−=

+⋅+
∆
−+

[2]
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c Aû∑= uc  is a conservative discretization of the convection term
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discretization of the diffusion term evaluated in each cell, cV  is the volume of each

cell, fA is the face area, fW  is the distance between neighboring cell circumcenters,

and f

CW  is the distance between the face circumcenter and the cell circumcenter.

Note that fu nu ⋅=  is the normal velocity component at each cell face and û  is the

normal velocity component that points out of a particular cell.  Similarly fn̂  is the

normal vector pointing out of a particular cell.

2.2 Reformulation as a Classic Control Volume Scheme
The reformulation of the divergence form is accomplished by multiplying each

evolution equation for the face normal velocity component (Eqn. [2]), by the face
normal vector, and summing over all the faces in the computational domain.  This
results in the following equation,
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The goal is then to recast this into a form that looks like a summation over
control volume cells.  Recognizing that f

2C

f
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boundary faces, and also noting that at boundary faces f2c pp = ,   [3] can be

rewritten as a summation over cells.
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This can be further simplified using three identities derived from Gauss’
divergence theorem. Gauss’ Divergence Theorem for an arbitrary bounded volume
and a vector quantity f is,
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where Ω  is the volume and Ω∂  is the boundary of the volume with unit normal
vector n̂ oriented outwards from the volume.  We are actually interested in convex
polygonal volumes where Gauss’ Theorem simplifies to,
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If f is a nonzero constant vector then 0Aˆ
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are nonzero constant vectors and x is the position vector with an origin located at the
cell circumcenter then it follows from [6] that in two-dimensions
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is the velocity vector and a is an arbitrary nonzero constant vector, then Gauss’
Theorem gives,
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The gradient of the position vector is the identity matrix ( sjj,sx δ= ), and since a

is an arbitrary vector
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where û is the outwards normal component of the velocity at the cell faces.  This is
an exact equation for polygonal volumes.   If we assume that the velocity field u is a
constant function (a first order approximation), then the second term will be zero and
the integrals can be evaluated.  In two dimensions, this gives the relation,
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The first two identities are geometric and they are exact.  The last expression
(Eqn. [9]) is really not an identity, it is a first order approximation for the cell
velocity vector given the normal velocity components at the cell faces.   With these
geometric identities and this definition for the cell velocity vector, [4] becomes,
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This equation is true for a collection of cells, but it is also true for a single mesh
cell.  The preceding analysis makes no distinction as to the number of cells.
Applying the previous definitions for cc and dc we can therefore write that
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This is true for each mesh cell, and has the form of a classic control volume
scheme for the velocity vector in the mesh cells.    It is important to note however,
that despite the apparent similarity there remains a subtle distinction from classic
control volume schemes.   In the staggered mesh scheme, the normal velocity
component u is the primary unknown and uc is a derived quantity.  In classic control
volume schemes, uc is the primary velocity unknown and the normal velocity
component at faces is derived.

3. Analysis of the Rotational Form

In this section, we will look at unstructured staggered mesh discretizations of the
rotational form of the Navier-Stokes equations.

)(p(
t

d ωω) ν×∇−−∇=×−
∂
∂

u
u

    [12]

where u is the velocity vector, ω is the vorticity, uu ⋅+= 2
1d pp  is the specific

dynamic pressure, andν is the kinematic viscosity.   This equation assumes that
viscosity is constant, but it is otherwise equivalent to other forms of the
incompressible Navier-Stokes equations.  Variable viscosity diffusion can be still be



represented in rotational form but the extra term (involving second derivatives of
viscosity) complicates the analysis unnecessarily.

This particular form of
the Navier-Stokes equations
is of interest because it
appears to be inherently
suited to the staggered mesh
discretization.   The classic
staggered mesh method can
be rearranged to look like a
discretization of [12].    It
will be shown that in two
dimensions the staggered
mesh update of face normal
velocities is directly
equivalent to a classic finite
volume method which
updates the vorticity at nodes
and where the control volumes are the dual mesh Veronoi polyhedra.

3.1 Discretization of the Rotational Form
Using the rotational form of the Navier-Stokes equations, the normal component

of the face velocity is discretized as,
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where nω  is the vorticity at a node in the direction out of the two-dimensional plane.

The face tangential points from node N1 to node N2 and is oriented 90 degrees
counterclockwise to the face normal vector.  The tangential velocity at the nodes in
the convection term is given by fnnv tu ⋅= .

3.2 Reformulation as a Control Volume for Vorticity
The reformulation of the rotational form is accomplished by dividing each

normal velocity evolution equation (Eqn. [13]) by the face area and then multiplying
by –1 if the face normal points clockwise with respect to the node in question, and
finally summing over all the faces touching a specific node.    The result will be
shown to be a control volume equation for the vorticity.  In mathematical notation
we start with the following equation,
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Figure 2. Notation for a cell face in relation
to neighboring cells and nodes.
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where the normal vector at each face has been chosen to point in a direction
counterclockwise with respect to the node in question.   In addition, node n0 is the
node around which the summation is occurring and node ni is the other node
adjoining that face.

In this case, we use a discrete version of Stokes Curl Theorem to simplify the
equations.  Stokes theorem says that for an arbitrary bounded surface and vector
quantity f,
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where S is the surface with normal z, S∂  is the boundary of the surface, and the
integration takes place in a counterclockwise direction around the boundary with
respect to the face normal.  We are actually interested in the planar polygonal
Veronio regions surrounding each node, it which case Stokes Theorem simplifies to
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If we let f equal the velocity vector and make the first order assumption that the
velocity is constant in the Veronio cell then we obtain,
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where nA is the area of the Veronio cell surrounding the node,  and the face normal

vectors are assumed to point in a counterclockwise direction around the node.

In conjunction with [17] it is clear that for interior nodes, the pressure term is
identically zero.  The net result is that [14] can be written as,
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where the face vorticity flux is given by fnini0n0n2
1

f
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out of the Veronio cell.   This is a discrete version of the continuous two-dimensional
vorticity evolution equation,
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Again, it is important to note that despite the apparent similarity there remains a
subtle distinction from classic control volume schemes.   In the staggered mesh
scheme, the normal velocity component u is the primary unknown and nω  is the

derived quantity.  In a classic control volume schemes, nω would be the primary

unknown.   So the staggered mesh scheme differs from a standard vorticity-
streamfunction or vorticity-velocity formulation in the fact that (often complex)
boundary conditions on the vorticity are not required.

4.  Discussion

The primary result of the current work is that staggered mesh methods are not
just control volume methods applied on staggered control volumes, but are directly
equivalent to classic collocated control volume methods. It was shown that
unstructured staggered mesh discretizations of the divergence form of the Navier-
Stokes equations are equivalent to classic control volume method for the velocity
vector in mesh cells.  Likewise, unstructured staggered mesh discretizations of the
rotational form of the Navier-Stokes equations are equivalent to classic control
volume method for the vorticity vector at mesh nodes (in Veronio cells).  These
equivalencies imply that the method possesses certain conservation properties.
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