UNSTRUCTURED ADAPTIVE MOVING MESH SOLUTION OF UNSTEADY
SHEAR FLOWS AND FREE-SURFACE FLOWS

J. Blair Perot
Department of Mechanical & Industrial Engineering
University of Massachusetts, Amherst
Amherst, Massachusetts 01003, USA
perot@ecs.umass.edu

David P. Schmidt
Department of Mechanical & Industrial Engineering
University of Massachusetts, Amherst
Amherst, Massachusetts 01003, USA
schmidt@ecs.umass.edu

ABSTRACT

A method for performing anisotropic unstructurenesh
adaptation is discussed that is well suited for patational
fluid dynamics on parallel distributed memory corgps. This
algorithm which involves mesh motion, rather thafinement
and coarsening, is fast, parallel, and fully conaive. The
approach is effective at accurately capturing Bedace flows,
boundary layers, and unsteady shear layers. Exanglsome
of applications are presented.

BACKGROUND

Mesh adaptation allows high quality CFD solntioto be
computed by placing the mesh where it is most needduid
solutions tend to have very thin but physicallytical layers
(shear layers and boundary layers) that must bejuzadely
resolved in order to accurately predict the flovhdéour. In
complex industrial or environmental applicatiortse tposition
and extent of these layers is often difficult tedict beforehand
and they often move with time. Anisotropic mestag@tdtion
allows these thin layers to be automatically resglv

Classic mesh adaptation involves mesh refinénemd
coarsening. This strategy is not very efficient parallel
machines, particularly distributed memory machitiee PC
clusters. Mesh refinement and coarsening occumsapity in a
few isolated regions of the flow domain. The wook
refinement and coarsening is therefore unequatiyriduted on
the processors. In addition, when the adaptasonomplete
some processors now have fewer or more unknowmsttier
neighbours leading to a lack of load balance inGR® part of
the parallel calculation. It is possible to redimite the cells
and rebalance the simulation after the adaptatioocess.
However this redistribution process involves extens
communication that is difficult to hide with any efsl
computations. Furthermore, load balancing the C&lbulation
still does not address the lack of balance in tHaptation
algorithm itself. Classic point insertion and rembalso leads
to meshes with relatively large jumps in the megk ¢up to a
factor of eight for 3D Cartesian meshes) that casiseng

artificial dispersion.

An alternative strategy is to move the mesm{sointo some
regions (refinement) and away from others (coarggni While
the mesh moves, the number of mesh points on eadegsor
remains constant, and the work to move the pomtsqually
spread among the processors. Mesh motion is tirerefell
load balanced and automatically leaves the CFDquorf the
code well load balanced. This approach to adaptatiso leads
to a very smooth mesh with very gradual shape dpd s
changes.

There are two further benefits to mesh motidfesh motion
does not change the number of unknowns, so theilaitn
time for the CFD problem remains highly predictabl®©n the
other hand, adaptation via point insertion can leadan
explosive growth in solution times if it is not eéully
controlled (typically via active human interventjomhich one
would like to avoid). Mesh motion can also be usedolve
other CFD issues besides thin layers. For examplexcellent
way to accurately resolve a moving discontinuiiig(la free-
surface or a shock) using very few mesh point® imbve the
mesh with the discontinuity.

The key elements of the mesh adaptation alguritvhich
will be discussed are: (1) a physically inspiredia@n for the
mesh motion that produces a high quality mesh edfiin
regions of large solution gradients, (2) an aneggtr error
measure on which to adapt, (3) an algorithm to taainhigh
quality mesh connectivity, (4) a correction to @IieD algorithm
that accounts for the fact that the mesh is moeimgtinuously
during each timestep of the CFD solver. This e
conserves mass and momentum (Perot, 2000) as svkihetic
energy (Zhanget al., 2002), and preserves constant numerical
solutions under the action of arbitrary mesh motiohhe mesh
motion isnot treated as in ALE (Arbitrary Lagrangian-Eulerian)
schemes where a conservative remapping from oné rees
another is performed every few timesteps @tal., 2001).

MESH MOTION
A physical analogy is used to determine the mestion.



The mesh is treated as a large collection of no&esh edge of
the mesh is a line between neighboring mesh nodésisa
treated as a linear spring (Habashial., 2000). The spring
constant for each spring is variable. A large gadfithe spring
constant in a local region of the mesh will cause gprings to
pull strongly in that region and will result in niesefinement in
that area.

A mesh is not just defined by the node pos#jdiut also by
its connectivity. The connectivity determines whitodes are
considered to be neighbors and it therefore defthesedges.
This section considers a procedure for optimizihg hode
positions of the mesh once the edges are prescrileda
subsequent section the issue of optimal connectivit
addressed.

In the case of a uniform spring constant fortte¢ edges of
the mesh, the equilibrium position for the nodesris in which
the edge lengths are all approximately the same. sizThe
result of this algorithm on a very simple 2D mesthwenly one
node that is free to move (the others are on afb@undary) is
shown in figure 1. If the boundary nodes movecéuse they
are on a moving free-surface or a moving slid wil interior
mesh will adjust to make the interior cells as sthiyo
distributed as possible.

Before After

Figure 1. Schematic representation of mesh smoothing in
two-dimensions.  Arrows in the first picture repes
spring forces acting on the central node. Boundenyes
are assumed fixed in this simple example.

The mathematical equation for the smoothingatmmn is,

n+1 n — T n+1
Xnode node — G n2ekeG n2eX node (1)
n+l _ n+l  _ n+l . .
where anEXnOcle = Xiode2 ~ Xnode1 IS the difference

operator between two nodes on an edge, and itspmar is a
summation of all the edges touching a single nodélhis

equation is an exact implementation of thesteady linear

spring analogy. Boundary nodes do not obey thisagon.

Their motion is either given (such as on a moviragl)vor their

motion is specified to be Lagrangian (such as éreesurface
interface).

The unsteady form of the equation allows thingg to relax
in a finite time rather than obtaining their edwium
distribution at every time step. This is usefultiie nonlinear
case when the spring constant is a function ofttetion error
and therefore a function of position. In thisnmdation, the

spring constant is a dimensionless number. kit>1 the

relaxation to equilibrium happens in less than ome step. |If

k =1 the mesh will not move more than the local mesh

spacing in one time step.  In the results preskint this paper,
the spring constant is always normalized suchiteahaximum
value is one.

The solution of the mesh relaxation equatiomn(EL) is
carried out using a diagonally preconditioned Cgaje
Gradient solver. Smoothing an initial mesh céde tsome time
depending on the quality of the initial mesh. Hegwame once the
simulation is evolving the mesh solver takes 2{&@ations to
converge and is extremely fast. With the springstant less
than or equal to 1 the system is highly diagonddyninant and
almost any iterative method will converge quicklylhis is far
more cost efficient than the common practice oeregating an
entirely new unstructured mesh (after a few timesteand it
maintains a very high quality mesh at every timgste This
algorithm does not change the mesh connectivitalsoontrol
volumes retain the same neighbors as they movedastart.
This allows the code to avoid the remapping stafjé\lcE
methods and incorporate the mesh motion directtp ithe
discrete control volume equations (presented atex kection).

With a uniform spring constant, mesh motioreigremely
effective at maintaining high quality meshes evehilevthe
boundary points of the mesh move.
simulation of a fluid ligament collapsing under théluence of
surface tension. Surface tension tends to brirgtifo ends
together but it also causes a pinching instabdttyhe center of
the ligament that can separate the ligament into parts.
Using classic fixed mesh adaptive methods to sdhvis
problem is difficult. With classic adaptation medls only a
small part of the total domain is occupied by flgarhent at any
particular time. The large density ratio of andavater (1000)
causes numerical difficulties in the momentum eiguaand the
small mesh sizes necessary to resolve the interéapére very
small timesteps to be used.

Figure 2. Collapse of a fluid ligament undéhe action o
surface tension using a moving mesh algorithm -
uniform spring constants. Surface motionL&sgrangian
interior motion is via Eqn. 1. Re =6, We = 3.

Figure 2 shows a



The discrete mesh motion equation (Eqn. 1)bzawiewed as
a discretization of the following partial differéaitequation.

% = o0 KOX )

Elliptic equations of this character are often usedefined the
mesh characteristics (Hartehal., 1983 and Huang & Russel,
1997). In certain limits the discrete mesh motaguation is
also equivalent to purely heuristic mesh distribuitalgorithms.

For example wherKk =1/ N where N is the number of node
neighbors Eqgn. 1 is equivalent to placing each natiéhe
average position of its neighbors.

Note that in three-dimensions, the mesh mogguation
(Egn 1) does not remove sliver cells. Howevercanh be
modified so do so. In this work, this is not nesay since the
sliver cells are removed by the algorithm whichiroptes the
mesh connectivity (presented in a later section).

ANISOTROPIC MESH ADAPTION

With the addition of variable spring constaritsis also
possible to use mesh motion to adapt the mesh pwrimant
internal solution features. In this work this is achievey
setting the spring constant to be proportional te second
derivative of the solution in the direction of tepring. This
causes the mesh to be pulled into regions wheresahgion
gradients are changing rapidly and stretched wtreresolution
is linear (or constant).

This approach automatically performs anisotopnesh
adaptation which is so important for thin structuguch as
boundary layers and shear layers. Springs aligiledg the
thin structure will have small solution second datives along
the spring direction. These springs will have treédy small
spring constants and relatively long lengths. ndther hand,
springs aligned across the layer will have lardat&m second
derivatives along the spring direction. Thesergiwill have
very large spring constants and short lengths. rEiselt is a
mesh (even an unstructured one) that is highlyeefiacross the
layer, but uses a course resolution along the layer

Consider first, the adaptation of the solutimna single

solution variable,@. The current results use the kinetic energy

as the adaptation variable. The preliminary gpdonstant on
each edge is then given by,

(an _an) |1D¢7ln2 _D¢7L1)
(Xn2 _an) |lxnz - an)

>

e
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This spring constant is then normalized so thatntaimum
value on the domain is equal to 1, and for stabiltasons we
frequently limit the extreme values of the spriranstant to be
at least 1/100 of the mean value of the spring teoisand less
than 100 times the mean value. The final springstant is then
given by,

— MIN(MAX (K Ko/ A) R A)
ke - MAX (k) ®)

where the value A=100 is used in this work.

When adaptation on multiple flow variablesdissired, the
spring constant is taken to be the maximum oftelindividual
spring constants.  This causes the mesh to adajbiet least

Figure3. Mesh and solution for the unsteady RANS flow
around a square cylinder at Re=21,400. The meghen
object boundary layer and wake has been refinelouinyan
interaction. It is still not sufficient for an agate (and
mesh independent) answer.
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Figure 4. Adaptive mesh refinement applied to the
unsteady vortex shedding behind a square cylindéris
uses exactly the same number of mesh cells agumefi3
(24,234) but now an accurate (mesh resolution
independent) solution is achieved.

resolved flow variable at any location. Howewataptation on
multiple variables is not addressed further in thisrk. For
incompressible flows, the kinetic energy has protenbe
sufficient in all the flows tested.

An example of anisotropic mesh adaptation véstmmotion
is shown in Figures 3 and 4. Figure 3 shows ahntiest has
been adapted by a human to try to resolve the itapbareas of
interest. The adapted mesh in figure 4 contaires same
number of mesh points as the mesh in figure 3 batdver 20
times the mesh resolution across the critical stes@rs. The
vortex shedding from a square cylinder is unsteahd the
resolution adapts in time, maintaining high resoluton the
moving shear layers at all times. However, itngportant to
note that the mesh motion is not Lagrangian, armdetfiptic
nature of the mesh motion equation (Egn 1) meaasmbsh
never becomes twisted or entangled.

OPTIMAL CONNECTIVITY

As discussed earlier, a mesh consists of twportant
properties, the placement of the nodes and howethodes are
connected together. The mesh motion algorithmnopés the
node positions but not necessarily the mesh coivitgct



Optimal mesh connectivity is maintained via a mégping
algorithm (Joe, 1989). Unlike the mesh motiono&atgm,
flipping does not take place during the timestépccurs more
like the ALE remap step at the end of the timestlpulation.
The interpolation that is necessary during thepftig process is
highly local and very infrequent. The cost and euoal
impact of the flipping process is very small sincaly
approximately 1 in every 5,000 cells gets flipped imestep.

At this time the flipping process can only bppked to
triangular meshes in 2D and tetrahedral cells in 3B two
dimensions, flipping is a local process where twangles are
replaced by two different triangles with better pedies. The
process is illustrated in figure 5. The usuakecion for
flipping in 2D is to remove small angles.  Frone ffigure it
can be seen that this also has the additional befeEmoving
large angles as well. It is not possible witlpgding alone to
make all angles acute. However it is possibleitb flipping to
make the mesh Delaunay. In 2D the Delaunay neshe
optimal (in many senses) connectivity for any giveade
distribution. It maximizes the minimum angle bétbally and
globally, it ensures that no node lies within thewmcircle of
any other node, it means a locally orthogonal duath (the
Voronoi dual) is well formed, and it is the mosgilwal mesh for
defining nearest neighbor connectivity.

Before After

Figure 5. Example of flipping two triangles to optimize
the mesh connectivity.

Perhaps most importantly for the flipping pregeit can be
shown that flipping only the local triangle paits¢hat violate
the Delaunay criteria will lead to the globally Behay (and
optimal) mesh connectivity. There are many wayddtermine
if the local Delaunay criterion is violated by tweighboring
triangles. In this work we use a comparison & thangle
circumcenter and centroid positions.

/1 - (X;ent _ Xient) mxc;ircum _ Xclircum) )

If A <O the two triangles are flipped.

Before flipping the solution is approximated ahe
surrounding local nodes. After flipping the solutids re-
interpolated from the surrounding nodes onto the m@ngles.
The interpolation is performed in such a way thatssand
momentum are conserved. However, the processightigl
diffusive and does lead to very small amounts dfficial
diffusion. The amount of artificial diffusion @oportional to
the number of flips, which tends to be small.

In three dimensions the flipping process idl §tossible.
However it is now necessary to flip two tetraheidta three, or
vice versa. It has been demonstrated (Perot apéi, 2003)
that all other degenerate or more complex flippgigations

can be decomposed into these two types of flipsto(23
tetrahedra and 3 to 2 tetrahedra)., if the 2 tdig fare all
performed before the 3-2 flips. An illustration &f 3D
tetrahedral flip is shown in figure 6.

Before After

Figure 6. Example of flipping in three dimensions from
3 tetrahedra to 2. The central edge is removedgal
with the three faces connected to it, and replagéd a
single face.

The situation in 3D is not as attractive mathgaally as in
2D. The Delaunay mesh no longer maximizes the rmim
angle. Flipping only locally non-Delaunay combioas does
not always lead to a globally Delaunay mesh. Knats
possible in 3D which must be untangled by templyrdipping
a locally Delaunay (optimal) tetrahedra set intooa-Delaunay
configuration. Heuristics (Nallapati and Pero0@) for
choosing which pairs to flip in order to untie kediave always
proven successful to date. Finally, the Delaunégr@ is not
always optimal in 3D. It does not remove slivelise

In 3D the criterion of locally maximizing theimmum angle
proves more successful. This criterion is no lorgguivalent
to the Delaunay criteria as it was in 2D. In addit no rigorous
statements of optimal global connectivity can bedena
Nevertheless, this procedure removes sliver cefid &aas
proven successful to date when implemented oniatyasf 3D
moving meshes.

Mesh flipping is a local process, so if domd@composition
is used to distribute the problem on a parallelcpssor it is
possible for each processor to flip the cells & particular
domain independently of the other processors. s phit of the
algorithm is therefore trivially parallel. Howeviris possible
that the flipping may not be well load balance. r¥lgells on
one processor might require flipping. In additidgnjs more
difficult to flip those cells that have a neighbwicell on a
different CPU. This is achieved in the currenpliementation
by transferring one (or two) of the cells betweka €PUs so
that all the cells required in a particular flipgioperation reside
on a single CPU. Since this transfer operatiomelatively
slow, only one (collective) CPU transfer per tinegsts made.
This may not be optimal, further flipping of cetteé the CPU
boundaries might make for a better connected mégiwever,
for unsteady problems this suboptimal procedursui$icient.
This procedure is also used to load balance thebeumf cells
on each CPU since they do not remain constant gluhe 3D
flipping procedure.

GOVERNING EQUATIONS

The mass and momentum equations for a movisi@rting
control volume are:



&[pav +[ p(u-v)MdA=0 6)
%J'pudv +Ipu(u -V) thA:J.rthA @)

where V is the velocity of the control volume surface.n |

addition there is an additional equation

%J'dv :JvﬂhdA (8)

which states that the rate of change of the volofrtee control
volume is directly proportional to the normal vetgcof its
surface. Any definition of the mesh velocity (angbre
importantly the face integral of its normal compet)enust be
consistent with this last equation. In two disiens,

[VIdA=vE BTAT MA) @

is consistent. Note that both the face normal areh at the

beginning and end of the time step must be usedthati only
the velocity of the mesh face center of gravitpesessary.

In 3D the time variation of the geometry is meomplex and

The velocity of the mesh nodes must also be acedubt.

[vIindA= v G (nf* AT +n] AY)
, . edges (20)
centr
_%Vf DZ (anxvnz)

Although the last term is small, and frequentlytref same order

as the timestepping error, it can not be neglectdejuation (8)
can not be approximately satisfied.

Having obtained a consistent mesh velocityittodusion of
mesh motion into a finite volume scheme is straigitvard.
The convective velocity is altered by the mesh sigyoand the
changing volume is included inside the time deiaat With
these changes no remeshing at the end of the &madst
necessary. The inclusion of mesh motion intotdirglement
schemes is discussed in Tezduyar et al. (1992)andgny &
Hulsemann (1998).

With this approach it is possible to developmeuical
methods that conserve mass, momentum, kinetic gnergl
even vorticity (Perot, 2000). It should be nothdt moving
mesh methods are not restricted to simple topadogi€igure 7
shows the break up of a fluid ligament into a bynadrop
distribution. The fluid is in a vacuum, and in tfieal frame
there is no mesh in the region between the draplets

Mesh motion is also advantageous for multispatdlems. It
allows a very fine mesh to be placed about a smaling
object that is embedded in a much larger simulatomain.
Figure 8 shows a zoom in on the mesh and the wgldield
surrounding a small liquid droplet. The droplebidy a small
portion of the simulation and is embedded in a ulebt gas
flow with scales up to 50 times larger than theptirbdiameter.
The mesh transitions smoothly as it moves away ftbe
object. There are none of the issues of meshplation that
occur with methods that use two overlapping mesh&se

single mesh makes this method easy to decompose and

parallelize.

Figure 7. Breakup of a fluid ligament into a binary droplet
distribution.

CONCLUSIONS

Mesh adaptation has the potential to signifigapnhance
CFD solution accuracy. Fluids frequently exhibitowimg
surfaces and thin internal shear layers. Captutingse
discontinuities and near discontinuities is ofteamyvimportant
for the overall solution behavior. A priori meshing of these
structures is frequently impossible, and refining entire mesh
can be extremely expensive.



Moving mesh adaptation provides many advantamesr

Figure 8. The 3D mesh and velocity field near a small kijui
droplet embedded in a turbulent gas flow.

traditional adaptation via point insertion and remwio (or
remeshing). The solution cost remains fixed, witlesh
resources moving smoothly (in time and space) tera/tthey
are needed most. In addition mesh motion is higlarallel
and leaves the CFD calculation well load balancedviesh
flipping is used to maintain optimal connectivity.The mesh
flipping algorithm is highly parallel but not pecity load
balanced. Fortunately, the small number of ckbd &re flipped
per timestep means this has little impact on theral
performance.

Anisotropic adaptation is straightforward i timoving mesh
framework.  Anisotropic adaptation is critical fonternal
features that are very thin or flat, such as sHegers or
boundary layers.

Finite volume methods are very common in CFid & is
clear that the inclusion of moving meshes into ¢heethods is
quite simple. The significant advantages of threseing mesh
modifications were demonstrated in a number ofdases.
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