

UNSTRUCTURED ADAPTIVE MOVING MESH SOLUTION OF UNSTEADY

SHEAR FLOWS AND FREE-SURFACE FLOWS

J. Blair Perot
Department of Mechanical & Industrial Engineering

University of Massachusetts, Amherst
 Amherst, Massachusetts 01003, USA

perot@ecs.umass.edu

David P. Schmidt
Department of Mechanical & Industrial Engineering

University of Massachusetts, Amherst
 Amherst, Massachusetts 01003, USA

schmidt@ecs.umass.edu

ABSTRACT

 A method for performing anisotropic unstructured mesh
adaptation is discussed that is well suited for computational
fluid dynamics on parallel distributed memory computers. This
algorithm which involves mesh motion, rather than refinement
and coarsening, is fast, parallel, and fully conservative. The
approach is effective at accurately capturing free-surface flows,
boundary layers, and unsteady shear layers. Examples of some
of applications are presented.

BACKGROUND

 Mesh adaptation allows high quality CFD solutions to be
computed by placing the mesh where it is most needed. Fluid
solutions tend to have very thin but physically critical layers
(shear layers and boundary layers) that must be adequately
resolved in order to accurately predict the flow behaviour. In
complex industrial or environmental applications, the position
and extent of these layers is often difficult to predict beforehand
and they often move with time. Anisotropic mesh adaptation
allows these thin layers to be automatically resolved.
 Classic mesh adaptation involves mesh refinement and
coarsening. This strategy is not very efficient on parallel
machines, particularly distributed memory machines like PC
clusters. Mesh refinement and coarsening occurs primarily in a
few isolated regions of the flow domain. The work of
refinement and coarsening is therefore unequally distributed on
the processors. In addition, when the adaptation is complete
some processors now have fewer or more unknowns than their
neighbours leading to a lack of load balance in the CFD part of
the parallel calculation. It is possible to redistribute the cells
and rebalance the simulation after the adaptation process.
However this redistribution process involves extensive
communication that is difficult to hide with any useful
computations. Furthermore, load balancing the CFD calculation
still does not address the lack of balance in the adaptation
algorithm itself. Classic point insertion and removal also leads
to meshes with relatively large jumps in the mesh size (up to a
factor of eight for 3D Cartesian meshes) that cause strong

artificial dispersion.
 An alternative strategy is to move the mesh points into some
regions (refinement) and away from others (coarsening). While
the mesh moves, the number of mesh points on each processor
remains constant, and the work to move the points is equally
spread among the processors. Mesh motion is therefore well
load balanced and automatically leaves the CFD portion of the
code well load balanced. This approach to adaptation also leads
to a very smooth mesh with very gradual shape and size
changes.
 There are two further benefits to mesh motion. Mesh motion
does not change the number of unknowns, so the calculation
time for the CFD problem remains highly predictable. On the
other hand, adaptation via point insertion can lead to an
explosive growth in solution times if it is not carefully
controlled (typically via active human intervention, which one
would like to avoid). Mesh motion can also be used to solve
other CFD issues besides thin layers. For example, an excellent
way to accurately resolve a moving discontinuity (like a free-
surface or a shock) using very few mesh points is to move the
mesh with the discontinuity.
 The key elements of the mesh adaptation algorithm which
will be discussed are: (1) a physically inspired equation for the
mesh motion that produces a high quality mesh refined in
regions of large solution gradients, (2) an anisotropic error
measure on which to adapt, (3) an algorithm to maintain high
quality mesh connectivity, (4) a correction to the CFD algorithm
that accounts for the fact that the mesh is moving continuously
during each timestep of the CFD solver. This correction
conserves mass and momentum (Perot, 2000) as well as kinetic
energy (Zhang et al., 2002), and preserves constant numerical
solutions under the action of arbitrary mesh motion. The mesh
motion is not treated as in ALE (Arbitrary Lagrangian-Eulerian)
schemes where a conservative remapping from one mesh to
another is performed every few timesteps (Hu et al., 2001).

MESH MOTION

 A physical analogy is used to determine the mesh motion.

Figure 1. Schematic representation of mesh smoothing in
two-dimensions. Arrows in the first picture represent
spring forces acting on the central node. Boundary nodes
are assumed fixed in this simple example.

The mesh is treated as a large collection of nodes. Each edge of
the mesh is a line between neighboring mesh nodes and is
treated as a linear spring (Habashi et al., 2000). The spring
constant for each spring is variable. A large value of the spring
constant in a local region of the mesh will cause the springs to
pull strongly in that region and will result in mesh refinement in
that area.
 A mesh is not just defined by the node positions, but also by
its connectivity. The connectivity determines which nodes are
considered to be neighbors and it therefore defines the edges.
This section considers a procedure for optimizing the node
positions of the mesh once the edges are prescribed. In a
subsequent section the issue of optimal connectivity is
addressed.
 In the case of a uniform spring constant for all the edges of
the mesh, the equilibrium position for the nodes is one in which
the edge lengths are all approximately the same size. The
result of this algorithm on a very simple 2D mesh with only one
node that is free to move (the others are on a fixed boundary) is
shown in figure 1. If the boundary nodes move (because they
are on a moving free-surface or a moving slid wall) the interior
mesh will adjust to make the interior cells as smoothly
distributed as possible.

 The mathematical equation for the smoothing operation is,

1 1
2 2

n n T n
node node n e e n e nodek+ +− = −x x G G x (1)

where
1 1 1

2 2 1
n n n

n e node node node
+ + += −G x x x is the difference

operator between two nodes on an edge, and its transpose is a
summation of all the edges touching a single node. This
equation is an exact implementation of the unsteady linear
spring analogy. Boundary nodes do not obey this equation.
Their motion is either given (such as on a moving wall), or their
motion is specified to be Lagrangian (such as on a free-surface
interface).
 The unsteady form of the equation allows the springs to relax
in a finite time rather than obtaining their equilibrium
distribution at every time step. This is useful in the nonlinear
case when the spring constant is a function of the solution error
and therefore a function of position. In this formulation, the

spring constant is a dimensionless number. If 1k ≫ the

relaxation to equilibrium happens in less than one time step. If

1k ≈ the mesh will not move more than the local mesh
spacing in one time step. In the results presented in this paper,
the spring constant is always normalized such that its maximum
value is one.
 The solution of the mesh relaxation equation (Eqn 1) is
carried out using a diagonally preconditioned Conjugate
Gradient solver. Smoothing an initial mesh can take some time
depending on the quality of the initial mesh. However, once the
simulation is evolving the mesh solver takes 2-10 iterations to
converge and is extremely fast. With the spring constant less
than or equal to 1 the system is highly diagonally dominant and
almost any iterative method will converge quickly. This is far
more cost efficient than the common practice of regenerating an
entirely new unstructured mesh (after a few timesteps) and it
maintains a very high quality mesh at every timestep. This
algorithm does not change the mesh connectivity so all control
volumes retain the same neighbors as they move and distort.
This allows the code to avoid the remapping stage of ALE
methods and incorporate the mesh motion directly into the
discrete control volume equations (presented in a later section).
 With a uniform spring constant, mesh motion is extremely
effective at maintaining high quality meshes even while the
boundary points of the mesh move. Figure 2 shows a
simulation of a fluid ligament collapsing under the influence of
surface tension. Surface tension tends to bring the two ends
together but it also causes a pinching instability at the center of
the ligament that can separate the ligament into two parts.
Using classic fixed mesh adaptive methods to solve this
problem is difficult. With classic adaptation methods only a
small part of the total domain is occupied by the ligament at any
particular time. The large density ratio of air and water (1000)
causes numerical difficulties in the momentum equation and the
small mesh sizes necessary to resolve the interface require very
small timesteps to be used.

Figure 2. Collapse of a fluid ligament under the action of
surface tension using a moving mesh algorithm with
uniform spring constants. Surface motion is Lagrangian,
interior motion is via Eqn. 1. Re = 6, We = 3.

 Before After

 The discrete mesh motion equation (Eqn. 1) can be viewed as
a discretization of the following partial differential equation.

 t kα∂
∂ = ∇ ⋅ ∇x x (2)

Elliptic equations of this character are often used to defined the
mesh characteristics (Harten et al., 1983 and Huang & Russel,
1997). In certain limits the discrete mesh motion equation is
also equivalent to purely heuristic mesh distribution algorithms.

For example when 1/k N= where N is the number of node
neighbors Eqn. 1 is equivalent to placing each node at the
average position of its neighbors.
 Note that in three-dimensions, the mesh motion equation
(Eqn 1) does not remove sliver cells. However, it can be
modified so do so. In this work, this is not necessary since the
sliver cells are removed by the algorithm which optimizes the
mesh connectivity (presented in a later section).

ANISOTROPIC MESH ADAPTION

 With the addition of variable spring constants it is also
possible to use mesh motion to adapt the mesh to important
internal solution features. In this work this is achieved by
setting the spring constant to be proportional to the second
derivative of the solution in the direction of the spring. This
causes the mesh to be pulled into regions where the solution
gradients are changing rapidly and stretched where the solution
is linear (or constant).
 This approach automatically performs anisotropic mesh
adaptation which is so important for thin structures such as
boundary layers and shear layers. Springs aligned along the
thin structure will have small solution second derivatives along
the spring direction. These springs will have relatively small
spring constants and relatively long lengths. On the other hand,
springs aligned across the layer will have large solution second
derivatives along the spring direction. These springs will have
very large spring constants and short lengths. The result is a
mesh (even an unstructured one) that is highly refined across the
layer, but uses a course resolution along the layer.
 Consider first, the adaptation of the solution to a single

solution variable, φ . The current results use the kinetic energy

as the adaptation variable. The preliminary spring constant on
each edge is then given by,

 2 1 2 1

2 1 2 1

() (| |)ˆ
() ()

n n n n
e

n n n n

k
φ φ− ⋅ ∇ −∇=

− ⋅ −
x x

x x x x
 (3)

This spring constant is then normalized so that the maximum
value on the domain is equal to 1, and for stability reasons we
frequently limit the extreme values of the spring constant to be
at least 1/100 of the mean value of the spring constant, and less
than 100 times the mean value. The final spring constant is then
given by,

ˆ ˆ ˆ((, /),)
()

e e e

e

MIN MAX k k A k A
e MAX kk = (4)

where the value A=100 is used in this work.
 When adaptation on multiple flow variables is desired, the
spring constant is taken to be the maximum of all the individual
spring constants. This causes the mesh to adapt to the least

resolved flow variable at any location. However, adaptation on
multiple variables is not addressed further in this work. For
incompressible flows, the kinetic energy has proven to be
sufficient in all the flows tested.
 An example of anisotropic mesh adaptation via mesh motion
is shown in Figures 3 and 4. Figure 3 shows a mesh that has
been adapted by a human to try to resolve the important areas of
interest. The adapted mesh in figure 4 contains the same
number of mesh points as the mesh in figure 3 but has over 20
times the mesh resolution across the critical shear layers. The
vortex shedding from a square cylinder is unsteady, and the
resolution adapts in time, maintaining high resolution on the
moving shear layers at all times. However, it is important to
note that the mesh motion is not Lagrangian, and the elliptic
nature of the mesh motion equation (Eqn 1) means the mesh
never becomes twisted or entangled.

OPTIMAL CONNECTIVITY

 As discussed earlier, a mesh consists of two important
properties, the placement of the nodes and how those nodes are
connected together. The mesh motion algorithm optimizes the
node positions but not necessarily the mesh connectivity.

Figure 4. Adaptive mesh refinement applied to the
unsteady vortex shedding behind a square cylinder. This
uses exactly the same number of mesh cells as in figure 3
(24,234) but now an accurate (mesh resolution
independent) solution is achieved.

Figure 3. Mesh and solution for the unsteady RANS flow
around a square cylinder at Re=21,400. The mesh in the
object boundary layer and wake has been refined by human
interaction. It is still not sufficient for an accurate (and
mesh independent) answer.

Optimal mesh connectivity is maintained via a mesh flipping
algorithm (Joe, 1989). Unlike the mesh motion algorithm,
flipping does not take place during the timestep. It occurs more
like the ALE remap step at the end of the timestep calculation.
The interpolation that is necessary during the flipping process is
highly local and very infrequent. The cost and numerical
impact of the flipping process is very small since only
approximately 1 in every 5,000 cells gets flipped per timestep.
 At this time the flipping process can only be applied to
triangular meshes in 2D and tetrahedral cells in 3D. In two
dimensions, flipping is a local process where two triangles are
replaced by two different triangles with better properties. The
process is illustrated in figure 5. The usual criterion for
flipping in 2D is to remove small angles. From the figure it
can be seen that this also has the additional benefit of removing
large angles as well. It is not possible with flipping alone to
make all angles acute. However it is possible to with flipping to
make the mesh Delaunay. In 2D the Delaunay mesh is the
optimal (in many senses) connectivity for any given node
distribution. It maximizes the minimum angle both locally and
globally, it ensures that no node lies within the circumcircle of
any other node, it means a locally orthogonal dual mesh (the
Voronoi dual) is well formed, and it is the most logical mesh for
defining nearest neighbor connectivity.

 Perhaps most importantly for the flipping process, it can be
shown that flipping only the local triangle pair sets that violate
the Delaunay criteria will lead to the globally Delaunay (and
optimal) mesh connectivity. There are many ways to determine
if the local Delaunay criterion is violated by two neighboring
triangles. In this work we use a comparison of the triangle
circumcenter and centroid positions.

 2 1 2 1() ()cent cent circum circumλ = − ⋅ −x x x x (5)

If 0λ < the two triangles are flipped.

 Before flipping the solution is approximated on the
surrounding local nodes. After flipping the solution is re-
interpolated from the surrounding nodes onto the new triangles.
The interpolation is performed in such a way that mass and
momentum are conserved. However, the process is slightly
diffusive and does lead to very small amounts of artificial
diffusion. The amount of artificial diffusion is proportional to
the number of flips, which tends to be small.
 In three dimensions the flipping process is still possible.
However it is now necessary to flip two tetrahedra into three, or
vice versa. It has been demonstrated (Perot & Nallapati, 2003)
that all other degenerate or more complex flipping situations

can be decomposed into these two types of flips (2 to 3
tetrahedra and 3 to 2 tetrahedra)., if the 2 to 3 flips are all
performed before the 3-2 flips. An illustration of a 3D
tetrahedral flip is shown in figure 6.

 The situation in 3D is not as attractive mathematically as in
2D. The Delaunay mesh no longer maximizes the minimum
angle. Flipping only locally non-Delaunay combinations does
not always lead to a globally Delaunay mesh. Knots are
possible in 3D which must be untangled by temporarily flipping
a locally Delaunay (optimal) tetrahedra set into a non-Delaunay
configuration. Heuristics (Nallapati and Perot, 2000) for
choosing which pairs to flip in order to untie knots have always
proven successful to date. Finally, the Delaunay criteria is not
always optimal in 3D. It does not remove sliver cells.
 In 3D the criterion of locally maximizing the minimum angle
proves more successful. This criterion is no longer equivalent
to the Delaunay criteria as it was in 2D. In addition, no rigorous
statements of optimal global connectivity can be made.
Nevertheless, this procedure removes sliver cells and has
proven successful to date when implemented on a variety of 3D
moving meshes.
 Mesh flipping is a local process, so if domain decomposition
is used to distribute the problem on a parallel processor it is
possible for each processor to flip the cells in its particular
domain independently of the other processors. This part of the
algorithm is therefore trivially parallel. However it is possible
that the flipping may not be well load balance. More cells on
one processor might require flipping. In addition, it is more
difficult to flip those cells that have a neighboring cell on a
different CPU. This is achieved in the current implementation
by transferring one (or two) of the cells between the CPUs so
that all the cells required in a particular flipping operation reside
on a single CPU. Since this transfer operation is relatively
slow, only one (collective) CPU transfer per timestep is made.
This may not be optimal, further flipping of cells on the CPU
boundaries might make for a better connected mesh. However,
for unsteady problems this suboptimal procedure is sufficient.
This procedure is also used to load balance the number of cells
on each CPU since they do not remain constant during the 3D
flipping procedure.

GOVERNING EQUATIONS

 The mass and momentum equations for a moving distorting
control volume are:

 Before After

Figure 6. Example of flipping in three dimensions from
3 tetrahedra to 2. The central edge is removed along
with the three faces connected to it, and replaced with a
single face.

 Before After

Figure 5. Example of flipping two triangles to optimize
the mesh connectivity.

 () 0d
dt dV dAρ ρ+ − ⋅ =∫ ∫ u v n (6)

 ()d
dt dV dA dAρ ρ τ+ − ⋅ = ⋅∫ ∫ ∫u u u v n n (7)

where v is the velocity of the control volume surface. In
addition there is an additional equation

 d
dt dV dA= ⋅∫ ∫ v n (8)

which states that the rate of change of the volume of the control
volume is directly proportional to the normal velocity of its
surface. Any definition of the mesh velocity (and more
importantly the face integral of its normal component) must be
consistent with this last equation. In two dimensions,

1 11

2 ()centr n n n n
f f f f fdA A A+ +⋅ = ⋅ +∫ v n v n n (9)

is consistent. Note that both the face normal and area at the
beginning and end of the time step must be used, but that only
the velocity of the mesh face center of gravity is necessary.
 In 3D the time variation of the geometry is more complex and
The velocity of the mesh nodes must also be accounted for.

2

1 11
2

1 212

()

()

centr n n n n
f f f f f

edges
centrt
f n n

dA A A+ +

∆

⋅ = ⋅ +

− ⋅ ×

∫

∑

v n v n n

v v v
 (10)

Although the last term is small, and frequently of the same order
as the timestepping error, it can not be neglected. Equation (8)
can not be approximately satisfied.
 Having obtained a consistent mesh velocity the inclusion of
mesh motion into a finite volume scheme is straight forward.
The convective velocity is altered by the mesh velocity and the
changing volume is included inside the time derivative. With
these changes no remeshing at the end of the timestep is
necessary. The inclusion of mesh motion into finite element
schemes is discussed in Tezduyar et al. (1992) and Tourigny &
Hulsemann (1998).
 With this approach it is possible to develop numerical
methods that conserve mass, momentum, kinetic energy, and
even vorticity (Perot, 2000). It should be noted that moving
mesh methods are not restricted to simple topologies. Figure 7
shows the break up of a fluid ligament into a binary drop
distribution. The fluid is in a vacuum, and in the final frame
there is no mesh in the region between the droplets.
 Mesh motion is also advantageous for multiscale problems. It
allows a very fine mesh to be placed about a small moving
object that is embedded in a much larger simulation domain.
Figure 8 shows a zoom in on the mesh and the velocity field
surrounding a small liquid droplet. The droplet is only a small
portion of the simulation and is embedded in a turbulent gas
flow with scales up to 50 times larger than the droplet diameter.
The mesh transitions smoothly as it moves away from the
object. There are none of the issues of mesh interpolation that
occur with methods that use two overlapping meshes. The
single mesh makes this method easy to decompose and
parallelize.

CONCLUSIONS

 Mesh adaptation has the potential to significantly enhance
CFD solution accuracy. Fluids frequently exhibit moving
surfaces and thin internal shear layers. Capturing these
discontinuities and near discontinuities is often very important
for the overall solution behavior. A priori meshing of these
structures is frequently impossible, and refining the entire mesh
can be extremely expensive.

Figure 7. Breakup of a fluid ligament into a binary droplet
distribution.

 Moving mesh adaptation provides many advantages over

traditional adaptation via point insertion and removal (or
remeshing). The solution cost remains fixed, with mesh
resources moving smoothly (in time and space) to where they
are needed most. In addition mesh motion is highly parallel
and leaves the CFD calculation well load balanced. Mesh
flipping is used to maintain optimal connectivity. The mesh
flipping algorithm is highly parallel but not perfectly load
balanced. Fortunately, the small number of cells that are flipped
per timestep means this has little impact on the overall
performance.
 Anisotropic adaptation is straightforward in the moving mesh
framework. Anisotropic adaptation is critical for internal
features that are very thin or flat, such as shear layers or
boundary layers.
 Finite volume methods are very common in CFD, and it is
clear that the inclusion of moving meshes into these methods is
quite simple. The significant advantages of these moving mesh
modifications were demonstrated in a number of test cases.

REFERENCES

 Habashi, W. G., Dompierre, J., Bourgault Y., Ait-Ali-Yahia,
D., Fortin, M. and Vallet, M-G., 2000, "Anisotropic Mesh
Adaptation: Towards User-Independent, Mesh-Independent and
Solver-Independent CFD Solutions: Part I: General Principles,"
International Journal for Numerical Methods in Fluids, 32 (6),
p. 725-744.
 Harten, A., Hyman J. M., 1983, “A self-adjusting grid for the
computation of weak solutions of hyperbolic conservation
laws”, J. Comput. Phys. 50, p. 235.
 Hu, H. H., Patankar, N. A. & Zhu, M. Y., 2001, “Direct
numerical simulations of fluid-solid systems using the arbitrary
Lagrangian-Eulerian Technique”, J. of Comput. Phys., 169, p.
427-462.
 Huang W. and Russel R. D., 1997, “Analysis of Moving
Mesh Partial Differential Equations with Spatial Smoothing”,
SIAM J. Numer. Anal. 34, 1106-1126.
 B. Joe, B., 1989, “Three-dimensional triangulations from
local transformations”, SIAM Journal of Scientific and
Statistical Computing, pp.718-741.
 Nallapati R. and Perot, J. B., 2000, “Numerical simulation of
free surface flows using a moving mesh”, 2000 American
Society of Mechanical Engineers, Fluids Engineering Summer
Conference.
 Perot, J. B., 2000, “Conservation Properties of Unstructured
Staggered Mesh Schemes”, J. Comput. Phys., 159, p. 58-89.
 Perot, J. B. and Nallapati, R., 2003, “A moving unstructured
staggered mesh method for the simulation of incompressible
free-surface flows” , J. Comput. Phys., 184, p. 192-214.
 Tezduyar, T. E., Behr, M. and Liou, J., 1992, “A New
Strategy for Finite Element Computations Involving Moving
Boundaries and Interfaces--The DSD/ST Procedure: I. The
Concept and the Preliminary Numerical Tests”, Comput. Meth.
Appl. Mech. Engrg., 94, p. 339-351.
 Tourigny, Y. & Hülsemann, F., 1998, “A New Moving Mesh
Algorithm for the Finite Element Solution of Variational
Problems”, SIAM J. Numer. Anal. 35, p. 1416-1438.
 Zhang, X., Schmidt, D. and Perot, J. B., 2002, “Accuracy and
Conservation Properties of a Three-Dimensional Unstructured
Staggered Mesh Scheme for Fluid Dynamics”, J. Comput.
Phys., 175, p. 764-791.

Figure 8. The 3D mesh and velocity field near a small liquid
droplet embedded in a turbulent gas flow.

