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ABSTRACT 

    A method for performing anisotropic unstructured mesh 
adaptation is discussed that is well suited for computational 
fluid dynamics on parallel distributed memory computers.  This 
algorithm which involves mesh motion, rather than refinement 
and coarsening, is fast, parallel, and fully conservative.  The 
approach is effective at accurately capturing free-surface flows, 
boundary layers, and unsteady shear layers.  Examples of some 
of applications are presented.   
 

BACKGROUND 

    Mesh adaptation allows high quality CFD solutions to be 
computed by placing the mesh where it is most needed.  Fluid 
solutions tend to have very thin but physically critical layers 
(shear layers and boundary layers) that must be adequately 
resolved in order to accurately predict the flow behaviour.  In 
complex industrial or environmental applications, the position 
and extent of these layers is often difficult to predict beforehand 
and they often move with time.  Anisotropic mesh adaptation 
allows these thin layers to be automatically resolved.   
    Classic mesh adaptation involves mesh refinement and 
coarsening.  This strategy is not very efficient on parallel 
machines, particularly distributed memory machines like PC 
clusters.  Mesh refinement and coarsening occurs primarily in a 
few isolated regions of the flow domain.  The work of 
refinement and coarsening is therefore unequally distributed on 
the processors.  In addition, when the adaptation is complete 
some processors now have fewer or more unknowns than their 
neighbours leading to a lack of load balance in the CFD part of 
the parallel calculation.  It is possible to redistribute the cells 
and rebalance the simulation after the adaptation process.  
However this redistribution process involves extensive 
communication that is difficult to hide with any useful 
computations.  Furthermore, load balancing the CFD calculation 
still does not address the lack of balance in the adaptation 
algorithm itself.  Classic point insertion and removal also leads 
to meshes with relatively large jumps in the mesh size (up to a 
factor of eight for 3D Cartesian meshes) that cause strong 

artificial dispersion.    
    An alternative strategy is to move the mesh points into some 
regions (refinement) and away from others (coarsening).   While 
the mesh moves, the number of mesh points on each processor 
remains constant, and the work to move the points is equally 
spread among the processors.  Mesh motion is therefore well 
load balanced and automatically leaves the CFD portion of the 
code well load balanced.  This approach to adaptation also leads 
to a very smooth mesh with very gradual shape and size 
changes.   
    There are two further benefits to mesh motion.  Mesh motion 
does not change the number of unknowns, so the calculation 
time for the CFD problem remains highly predictable.   On the 
other hand, adaptation via point insertion can lead to an 
explosive growth in solution times if it is not carefully 
controlled (typically via active human intervention, which one 
would like to avoid).  Mesh motion can also be used to solve 
other CFD issues besides thin layers.  For example, an excellent 
way to accurately resolve a moving discontinuity (like a free-
surface or a shock) using very few mesh points is to move the 
mesh with the discontinuity.    
    The key elements of the mesh adaptation algorithm which 
will be discussed are: (1) a physically inspired equation for the 
mesh motion that produces a high quality mesh refined in 
regions of large solution gradients, (2) an anisotropic error 
measure on which to adapt, (3) an algorithm to maintain high 
quality mesh connectivity, (4) a correction to the CFD algorithm 
that accounts for the fact that the mesh is moving continuously 
during each timestep of the CFD solver.  This correction 
conserves mass and momentum (Perot, 2000) as well as kinetic 
energy (Zhang et al., 2002), and preserves constant numerical 
solutions under the action of arbitrary mesh motion.   The mesh 
motion is not treated as in ALE (Arbitrary Lagrangian-Eulerian) 
schemes where a conservative remapping from one mesh to 
another is performed every few timesteps (Hu et al., 2001).   
 

MESH MOTION 

    A physical analogy is used to determine the mesh motion.  



 

 
 
 
Figure 1. Schematic representation of mesh smoothing in 
two-dimensions.  Arrows in the first picture represent 
spring forces acting on the central node.  Boundary nodes 
are assumed fixed in this simple example.   
 

The mesh is treated as a large collection of nodes.  Each edge of 
the mesh is a line between neighboring mesh nodes and is 
treated as a linear spring (Habashi et al., 2000).  The spring 
constant for each spring is variable.  A large value of the spring 
constant in a local region of the mesh will cause the springs to 
pull strongly in that region and will result in mesh refinement in 
that area.    
    A mesh is not just defined by the node positions, but also by 
its connectivity.  The connectivity determines which nodes are 
considered to be neighbors and it therefore defines the edges.  
This section considers a procedure for optimizing the node 
positions of the mesh once the edges are prescribed.  In a 
subsequent section the issue of optimal connectivity is 
addressed.   
    In the case of a uniform spring constant for all the edges of 
the mesh, the equilibrium position for the nodes is one in which 
the edge lengths are all approximately the same size.   The 
result of this algorithm on a very simple 2D mesh with only one 
node that is free to move (the others are on a fixed boundary) is 
shown in figure 1.   If the boundary nodes move (because they 
are on a moving free-surface or a moving slid wall) the interior 
mesh will adjust to make the interior cells as smoothly 
distributed as possible.   
  

    The mathematical equation for the smoothing operation is, 
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operator between two nodes on an edge, and its transpose is a 
summation of all the edges touching a single node.   This 
equation is an exact implementation of the unsteady linear 
spring analogy.   Boundary nodes do not obey this equation.  
Their motion is either given (such as on a moving wall), or their 
motion is specified to be Lagrangian (such as on a free-surface 
interface).    
    The unsteady form of the equation allows the springs to relax 
in a finite time rather than obtaining their equilibrium 
distribution at every time step.  This is useful in the nonlinear 
case when the spring constant is a function of the solution error 
and therefore a function of position.   In this formulation, the 

spring constant is a dimensionless number.  If 1k ≫  the 

relaxation to equilibrium happens in less than one time step.   If 

1k ≈  the mesh will not move more than the local mesh 
spacing in one time step.    In the results presented in this paper, 
the spring constant is always normalized such that its maximum 
value is one.   
    The solution of the mesh relaxation equation (Eqn 1) is 
carried out using a diagonally preconditioned Conjugate 
Gradient solver.   Smoothing an initial mesh can take some time 
depending on the quality of the initial mesh.  However, once the 
simulation is evolving the mesh solver takes 2-10 iterations to 
converge and is extremely fast.   With the spring constant less 
than or equal to 1 the system is highly diagonally dominant and 
almost any iterative method will converge quickly.   This is far 
more cost efficient than the common practice of regenerating an 
entirely new unstructured mesh (after a few timesteps) and it 
maintains a very high quality mesh at every timestep.   This 
algorithm does not change the mesh connectivity so all control 
volumes retain the same neighbors as they move and distort.   
This allows the code to avoid the remapping stage of ALE 
methods and incorporate the mesh motion directly into the 
discrete control volume equations (presented in a later section). 
    With a uniform spring constant, mesh motion is extremely 
effective at maintaining high quality meshes even while the 
boundary points of the mesh move.  Figure 2 shows a 
simulation of a fluid ligament collapsing under the influence of 
surface tension.  Surface tension tends to bring the two ends 
together but it also causes a pinching instability at the center of 
the ligament that can separate the ligament into two parts.   
Using classic fixed mesh adaptive methods to solve this 
problem is difficult.  With classic adaptation methods only a 
small part of the total domain is occupied by the ligament at any 
particular time.   The large density ratio of air and water (1000) 
causes numerical difficulties in the momentum equation and the 
small mesh sizes necessary to resolve the interface require very 
small timesteps to be used.     
 

   
Figure 2.  Collapse of a fluid ligament under the action of 
surface tension using a moving mesh algorithm with 
uniform spring constants.  Surface motion is Lagrangian, 
interior motion is via Eqn. 1.    Re = 6, We = 3.   

   Before          After  



    The discrete mesh motion equation (Eqn. 1) can be viewed as 
a discretization of the following partial differential equation.   
 

  t kα∂
∂ = ∇ ⋅ ∇x x           (2) 

 
Elliptic equations of this character are often used to defined the 
mesh characteristics (Harten et al., 1983  and Huang & Russel, 
1997).   In certain limits the discrete mesh motion equation is 
also equivalent to purely heuristic mesh distribution algorithms.  

For example when 1/k N=  where N is the number of node 
neighbors Eqn. 1 is equivalent to placing each node at the 
average position of its neighbors.    
    Note that in three-dimensions, the mesh motion equation 
(Eqn 1) does not remove sliver cells.  However, it can be 
modified so do so.   In this work, this is not necessary since the 
sliver cells are removed by the algorithm which optimizes the 
mesh connectivity (presented in a later section).  
 

ANISOTROPIC MESH ADAPTION 

    With the addition of variable spring constants it is also 
possible to use mesh motion to adapt the mesh to important 
internal solution features.   In this work this is achieved by 
setting the spring constant to be proportional to the second 
derivative of the solution in the direction of the spring.   This 
causes the mesh to be pulled into regions where the solution 
gradients are changing rapidly and stretched where the solution 
is linear (or constant).    
    This approach automatically performs anisotropic mesh 
adaptation which is so important for thin structures such as 
boundary layers and shear layers.   Springs aligned along the 
thin structure will have small solution second derivatives along 
the spring direction.  These springs will have relatively small 
spring constants and relatively long lengths.  On the other hand, 
springs aligned across the layer will have large solution second 
derivatives along the spring direction.  These springs will have 
very large spring constants and short lengths.  The result is a 
mesh (even an unstructured one) that is highly refined across the 
layer, but uses a course resolution along the layer. 
    Consider first, the adaptation of the solution to a single 

solution variable, φ .  The current results use the kinetic energy 

as the adaptation variable.   The preliminary spring constant on 
each edge is then given by, 
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This spring constant is then normalized so that the maximum 
value on the domain is equal to 1, and for stability reasons we 
frequently limit the extreme values of the spring constant to be 
at least 1/100 of the mean value of the spring constant, and less 
than 100 times the mean value.  The final spring constant is then 
given by, 
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where the value A=100 is used in this work. 
     When adaptation on multiple flow variables is desired, the 
spring constant is taken to be the maximum of all the individual 
spring constants.   This causes the mesh to adapt to the least 

resolved flow variable at any location.   However, adaptation on 
multiple variables is not addressed further in this work.  For 
incompressible flows, the kinetic energy has proven to be 
sufficient in all the flows tested.   
    An example of anisotropic mesh adaptation via mesh motion 
is shown in Figures 3 and 4.   Figure 3 shows a mesh that has 
been adapted by a human to try to resolve the important areas of 
interest.  The adapted mesh in figure 4 contains the same 
number of mesh points as the mesh in figure 3 but has over 20 
times the mesh resolution across the critical shear layers.   The 
vortex shedding from a square cylinder is unsteady, and the 
resolution adapts in time, maintaining high resolution on the 
moving shear layers at all times.  However, it is important to 
note that the mesh motion is not Lagrangian, and the elliptic 
nature of the mesh motion equation (Eqn 1) means the mesh 
never becomes twisted or entangled.  
 

OPTIMAL CONNECTIVITY 

    As discussed earlier, a mesh consists of two important 
properties, the placement of the nodes and how those nodes are 
connected together.  The mesh motion algorithm optimizes the 
node positions but not necessarily the mesh connectivity.  

Figure 4.  Adaptive mesh refinement applied to the 
unsteady vortex shedding behind a square cylinder.  This 
uses exactly the same number of mesh cells as in figure 3 
(24,234) but now an accurate (mesh resolution 
independent) solution is achieved.    

Figure 3.   Mesh and solution for the unsteady RANS flow 
around a square cylinder at Re=21,400.  The mesh in the 
object boundary layer and wake has been refined by human 
interaction.  It is still not sufficient for an accurate (and 
mesh independent) answer. 
 



Optimal mesh connectivity is maintained via a mesh flipping 
algorithm (Joe, 1989).   Unlike the mesh motion algorithm, 
flipping does not take place during the timestep.  It occurs more 
like the ALE remap step at the end of the timestep calculation.  
The interpolation that is necessary during the flipping process is 
highly local and very infrequent.  The cost and numerical 
impact of the flipping process is very small since only 
approximately 1 in every 5,000 cells gets flipped per timestep.   
    At this time the flipping process can only be applied to 
triangular meshes in 2D and tetrahedral cells in 3D.  In two 
dimensions, flipping is a local process where two triangles are 
replaced by two different triangles with better properties.  The 
process is illustrated in figure 5.   The usual criterion for 
flipping in 2D is to remove small angles.    From the figure it 
can be seen that this also has the additional benefit of removing 
large angles as well.   It is not possible with flipping alone to 
make all angles acute.  However it is possible to with flipping to 
make the mesh Delaunay.    In 2D the Delaunay mesh is the 
optimal (in many senses) connectivity for any given node 
distribution.  It maximizes the minimum angle both locally and 
globally, it ensures that no node lies within the circumcircle of 
any other node, it means a locally orthogonal dual mesh (the 
Voronoi dual) is well formed, and it is the most logical mesh for 
defining nearest neighbor connectivity.     

 
    Perhaps most importantly for the flipping process, it can be 
shown that flipping only the local triangle pair sets that violate 
the Delaunay criteria will lead to the globally Delaunay (and 
optimal) mesh connectivity.   There are many ways to determine 
if the local Delaunay criterion is violated by two neighboring 
triangles.   In this work we use a comparison of the triangle 
circumcenter and centroid positions. 
 

          2 1 2 1( ) ( )cent cent circum circumλ = − ⋅ −x x x x      (5) 

 

If 0λ <  the two triangles are flipped.   
 
    Before flipping the solution is approximated on the 
surrounding local nodes. After flipping the solution is re-
interpolated from the surrounding nodes onto the new triangles.    
The interpolation is performed in such a way that mass and 
momentum are conserved.  However, the process is slightly 
diffusive and does lead to very small amounts of artificial 
diffusion.    The amount of artificial diffusion is proportional to 
the number of flips, which tends to be small.  
    In three dimensions the flipping process is still possible.  
However it is now necessary to flip two tetrahedra into three, or 
vice versa.    It has been demonstrated (Perot & Nallapati, 2003) 
that all other degenerate or more complex flipping situations 

can be decomposed into these two types of flips (2 to 3 
tetrahedra and 3 to 2 tetrahedra)., if the 2 to 3 flips are all 
performed before the 3-2 flips.  An illustration of a 3D 
tetrahedral flip is shown in figure 6.     
 

     
    The situation in 3D is not as attractive mathematically as in 
2D.  The Delaunay mesh no longer maximizes the minimum 
angle.   Flipping only locally non-Delaunay combinations does 
not always lead to a globally Delaunay mesh.  Knots are 
possible in 3D which must be untangled by temporarily flipping 
a locally Delaunay (optimal) tetrahedra set into a non-Delaunay 
configuration.   Heuristics (Nallapati and Perot, 2000) for 
choosing which pairs to flip in order to untie knots have always 
proven successful to date.  Finally, the Delaunay criteria is not 
always optimal in 3D.  It does not remove sliver cells.    
    In 3D the criterion of locally maximizing the minimum angle 
proves more successful.  This criterion is no longer equivalent 
to the Delaunay criteria as it was in 2D.  In addition, no rigorous 
statements of optimal global connectivity can be made.    
Nevertheless, this procedure removes sliver cells and has 
proven successful to date when implemented on a variety of 3D 
moving meshes. 
    Mesh flipping is a local process, so if domain decomposition 
is used to distribute the problem on a parallel processor it is 
possible for each processor to flip the cells in its particular 
domain independently of the other processors.   This part of the 
algorithm is therefore trivially parallel.  However it is possible 
that the flipping may not be well load balance.  More cells on 
one processor might require flipping.  In addition, it is more 
difficult to flip those cells that have a neighboring cell on a 
different CPU.   This is achieved in the current implementation 
by transferring one (or two) of the cells between the CPUs so 
that all the cells required in a particular flipping operation reside 
on a single CPU.   Since this transfer operation is relatively 
slow, only one (collective) CPU transfer per timestep is made.   
This may not be optimal, further flipping of cells on the CPU 
boundaries might make for a better connected mesh.  However, 
for unsteady problems this suboptimal procedure is sufficient.  
This procedure is also used to load balance the number of cells 
on each CPU since they do not remain constant during the 3D 
flipping procedure. 

GOVERNING EQUATIONS  

    The mass and momentum equations for a moving distorting 
control volume are: 
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Figure 6.  Example of flipping in three dimensions from 
3 tetrahedra to 2.   The central edge is removed along 
with the three faces connected to it, and replaced with a 
single face.   

 
 
 
 
 
 
           Before        After 
 

Figure 5.  Example of flipping two triangles to optimize 
the mesh connectivity. 
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      ( )d
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where v  is the velocity of the control volume surface.   In 
addition there is an additional equation 
 

     d
dt dV dA= ⋅∫ ∫ v n         (8) 

which states that the rate of change of the volume of the control 
volume is directly proportional to the normal velocity of its 
surface.   Any definition of the mesh velocity (and more 
importantly the face integral of its normal component) must be 
consistent with this last equation.    In two dimensions,  
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is consistent.  Note that both the face normal and area at the 
beginning and end of the time step must be used, but that only 
the velocity of the mesh face center of gravity is necessary.    
    In 3D the time variation of the geometry is more complex and 
The velocity of the mesh nodes must also be accounted for.   
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Although the last term is small, and frequently of the same order 
as the timestepping error, it can not be neglected.    Equation (8) 
can not be approximately satisfied. 
    Having obtained a consistent mesh velocity the inclusion of 
mesh motion into a finite volume scheme is straight forward.    
The convective velocity is altered by the mesh velocity and the 
changing volume is included inside the time derivative.   With 
these changes no remeshing at the end of the timestep is 
necessary.   The inclusion of mesh motion into finite element 
schemes is discussed in Tezduyar et al. (1992) and Tourigny & 
Hulsemann (1998).   
    With this approach it is possible to develop numerical 
methods that conserve mass, momentum, kinetic energy, and 
even vorticity (Perot, 2000).   It should be noted that moving 
mesh methods are not restricted to simple topologies.   Figure 7 
shows the break up of a fluid ligament into a binary drop 
distribution.  The fluid is in a vacuum, and in the final frame 
there is no mesh in the region between the droplets.   
   Mesh motion is also advantageous for multiscale problems.  It 
allows a very fine mesh to be placed about a small moving 
object that is embedded in a much larger simulation domain.  
Figure 8 shows a zoom in on the mesh and the velocity field 
surrounding a small liquid droplet.  The droplet is only a small 
portion of the simulation and is embedded in a turbulent gas 
flow with scales up to 50 times larger than the droplet diameter.   
The mesh transitions smoothly as it moves away from the 
object.  There are none of the issues of mesh interpolation that 
occur with methods that use two overlapping meshes.  The 
single mesh makes this method easy to decompose and 
parallelize. 

 

CONCLUSIONS 

    Mesh adaptation has the potential to significantly enhance 
CFD solution accuracy.  Fluids frequently exhibit moving 
surfaces and thin internal shear layers.  Capturing these 
discontinuities and near discontinuities is often very important 
for the overall solution behavior.   A priori meshing of these 
structures is frequently impossible, and refining the entire mesh 
can be extremely expensive.   

 
 
Figure 7. Breakup of a fluid ligament into a binary droplet 
distribution. 



   Moving mesh adaptation provides many advantages over 

traditional adaptation via point insertion and removal (or 
remeshing).   The solution cost remains fixed, with mesh 
resources moving smoothly (in time and space) to where they 
are needed most.   In addition mesh motion is highly parallel 
and leaves the CFD calculation well load balanced.   Mesh 
flipping is used to maintain optimal connectivity.   The mesh 
flipping algorithm is highly parallel but not perfectly load 
balanced.  Fortunately, the small number of cells that are flipped 
per timestep means this has little impact on the overall 
performance.   
    Anisotropic adaptation is straightforward in the moving mesh 
framework.  Anisotropic adaptation is critical for internal 
features that are very thin or flat, such as shear layers or 
boundary layers.   
    Finite volume methods are very common in CFD, and it is 
clear that the inclusion of moving meshes into these methods is 
quite simple.   The significant advantages of these moving mesh 
modifications were demonstrated in a number of test cases.    
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Figure 8. The 3D mesh and velocity field near a small liquid 
droplet embedded in a turbulent gas flow. 


