

Is the Keller Box Scheme Mimetic?

Blair Perot

Theoretical and Computational Fluid Dynamics Laboratory

SIAM Conference on Computational Science and Engineering

March 1, 2013

Driving Question

Are all mimetic methods related to a discrete exterior calculus?

• Keller Box is `mimetic'.

 But not related to any (classic) discrete exterior calculus.

Keller Box is Mimetic

- Multi-Symplectic: (Reich, JCP, 2000)
- Wave Propagation: (Frank, J. Phys. A 2006)
- Exact Discretization (Perot and Subramanian, 2007)
- Long History Priessman Box Scheme (1961) Boundary Layer Eqns. (Cebeci and Bradshaw, 1977) Navier-Stokes (Chattot, 1999) Advection-Diffusion (Croisille and Greff, 2005)

Discrete Calculus Philosophy

Separate DiscretizationPDE -> LAfromApproximationLA -> square LA

- Do ALL discretization exactly.
- This means that the calculus and the physics remain exact.

All approximations = interpolation problems.
Numerical approximation only in material laws (which are engineering approximations already)

Example: Heat Eqn

Discretize Physics and Math - exactly.
Approximate Material laws - using interpolation

Exact Discretization

$$I_{c}^{n+1} - I_{c}^{n} = -\sum_{faces} \overline{Q}_{f}^{out} \quad \text{where} \quad I_{c}^{n+1} = \int_{\Omega_{c}} idV$$

Energy: FV approach.
$$\overline{Q}_{f} = \int dt \int \mathbf{q} \cdot \mathbf{n} dA$$

Not very interesting.

$$\overline{\mathbf{g}}_{c}^{n+1} = \int_{\Omega_{c}} \nabla T dV |^{n+1} = \sum_{faces} \mathbf{n}_{f}^{out} \overline{T}_{f}^{n+1} \qquad \overline{\mathbf{g}}_{c}^{n+1} = \int_{\Omega_{c}} \mathbf{g} dV |^{n+1}$$
$$\overline{T}_{f}^{n+1} = \frac{1}{A} \int T dA$$

Math: Still Exact via Gauss' theorem. Different from all other mimetic methods.

6

Exact Discretization of Heat Eqn.

$$\begin{bmatrix} \mathbf{I} & \mathbf{D} & \mathbf{0} & \mathbf{0} \\ \mathbf{0}_{d} & \mathbf{0}_{d} & -\mathbf{I}_{d} & \mathbf{N}_{d} \end{bmatrix} \begin{pmatrix} I_{c}^{n+1} \\ \overline{\mathcal{Q}}_{f} \\ \overline{\mathbf{g}}_{c}^{n+1} \\ \overline{T}_{f}^{n+1} \end{pmatrix} = \begin{pmatrix} I_{c}^{n} \\ \mathbf{0}_{d} \end{pmatrix}$$

But not CLOSED. Too many unknowns.

$$I_{c}^{n+1} \approx (\rho C)_{c} \sum_{faces} V_{cf} \overline{T}_{f}$$
$$-k_{c} \frac{\Delta t}{2} (\overline{\mathbf{g}}_{c}^{n+1} + \overline{\mathbf{g}}_{c}^{n}) \approx \sum_{faces} \mathbf{r}_{f} \overline{Q}_{f}$$

-Material Constitutive Eqns
-Physical Approximation.
-Numerical Approximation.
- Interpolation Problem.

Summary of Keller Box

Linear T in elements
Constant q in elements

$$\begin{bmatrix} (\rho C)_c A_{f2c} & \mathbf{D} \\ \mathbf{N}_d & \frac{2}{\Delta t k_c} \mathbf{R}_d \end{bmatrix} \begin{pmatrix} \overline{T}_f^{n+1} \\ \overline{Q}_f \end{pmatrix} = \begin{pmatrix} (\rho C)_c A_{f2c} \overline{T}_f^n \\ -\mathbf{N}_d \overline{T}_f^n \end{pmatrix}$$

Not symmetric. Square matrix (for simplices). Invertible. (but not with CG) Cannot easily eliminate Q_f.

Results

KB is better than FV (due to higher accuracy).
Other low-order DEC methods are better than KB.
Log scale

Comparison

$$\overline{\mathbf{g}}_{c}^{n+1} = \int_{\Omega_{c}} \overline{\mathbf{g}} dV |^{n+1} = \sum_{faces} \mathbf{n}_{f}^{out} \overline{T}_{f}^{n+1} \qquad \text{KB}$$
$$\overline{\mathbf{g}}_{e}^{n+1} = \int \overline{\mathbf{g}} \cdot d\mathbf{l} |^{n+1} = T_{2}^{n+1} - T_{1}^{n+1} \qquad \text{Others}$$

KB has the gradient on elements.
Others have it on primary or dual edges.

KB has T as an integral unknown on faces.
Others have T as a point value (0-form) at primary nodes or dual nodes (cell centers).

10

Exterior Calculus ?

$$T_n \Rightarrow \nabla \Rightarrow g_e \Rightarrow \nabla \times \Rightarrow Q_f \Rightarrow \nabla \cdot \Rightarrow S_c$$

$$\mathsf{KB}$$

$$? \Leftarrow \mathbf{g}_c \Leftarrow \nabla \Leftarrow T_f$$

11

Is the KB Scheme Related to other Mimetic methods?

Yes

- Captures
 Physics Well.
- Has an exact Discretization.

Νο

- Doesn't fit into DEC framework.
- Uses a fundamentally different exact gradient.

- KB has an Exact Discretization.
- KB is Mimetic.
- KB is an example where (classic) DEC may not work well to analyze the method.

