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Driving Question 

Are all mimetic methods related 
to a discrete exterior calculus? 

 
Keller Box is ‘mimetic’. 

 
But not related to any (classic) 
discrete exterior calculus. 
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Keller Box is Mimetic 
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Multi-Symplectic: (Reich, JCP, 2000) 
 
Wave Propagation: (Frank,  J. Phys. A 2006) 
 
Exact Discretization (Perot and Subramanian, 2007) 
 
Long History 
Priessman Box Scheme (1961) 
Boundary Layer Eqns. (Cebeci and Bradshaw, 1977) 
Navier-Stokes   (Chattot, 1999) 
Advection-Diffusion (Croisille and Greff, 2005) 

 
 

 
 
 
 
 
 



Discrete Calculus Philosophy 
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Do ALL discretization exactly. 
This means that the calculus and the physics 
remain exact. 
 
All approximations = interpolation problems. 
Numerical approximation only in material laws 

(which are engineering approximations already) 
 
 

 

Separate Discretization 
from        Approximation 

PDE -> LA 
LA -> square LA 



Example: Heat Eqn 
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Discretize Physics and Math - exactly. 
Approximate Material laws - using interpolation 
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Conservation of Energy (Physics) 

 

Perfectly Caloric Material  (Mat.) 

 

Fourier’s  Heat Flux Law  (Mat.) 

 

Def. of Gradient (Math) 



Exact Discretization 
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Energy:  FV approach.   

Not very interesting. 
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Math:  Still Exact via Gauss’ theorem.  

Different from all other mimetic methods. 
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Exact Discretization of Heat Eqn. 
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           But not CLOSED.  Too many unknowns. 
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-Material Constitutive Eqns 

-Physical Approximation. 

-Numerical Approximation. 

- Interpolation Problem. 



Summary of Keller Box 
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Linear T in elements 
Constant q in elements 
 

Not symmetric. 

Square matrix (for simplices). 

Invertible.  (but not with CG) 

Cannot easily eliminate Qf . 



Results 
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KB is better than FV (due to higher accuracy). 
Other low-order DEC methods are better than KB. 
Log scale 



Comparison 
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KB has the gradient on elements. 
Others have it on primary or dual edges. 
 
KB has T as an integral unknown on faces. 
Others have T as a point value (0-form) at 
primary nodes or dual nodes (cell centers). 
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Others 



Exterior Calculus ? 
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triangles 

 

 

 

polygons 



Is the KB Scheme Related 
to other Mimetic methods? 
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Yes 
 

Captures 
Physics Well. 
 
Has an exact 
Discretization. 

 

 

No 
 

Doesn't fit into 
DEC framework. 

 
Uses a 
fundamentally 
different exact 
gradient. 
 

 



Summary 
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KB has an Exact Discretization.  
 
KB is Mimetic. 

 
KB is an example where (classic) 
DEC may not work well to analyze 
the method. 
 


