Is the Keller Box Scheme Mimetic?

Blair Perot
Theoretical and Computational Fluid Dynamics Laboratory

SIAM Conference on Computational Science and Engineering

March 1, 2013

Driving Question

- Are all mimetic methods related to a discrete exterior calculus?
- Keller Box is 'mimetic'.
- But not related to any (classic) discrete exterior calculus.

Keller Box is Mimetic

- Multi-Symplectic: (Reich, JCP, 2000)
- Wave Propagation: (Frank, J. Phys. A 2006)
- Exact Discretization (Perot and Subramanian, 2007)
- Long History

Priessman Box Scheme (1961)
Boundary Layer Eqns. (Cebeci and Bradshaw, 1977)
Navier-Stokes (Chattot, 1999)
Advection-Diffusion (Croisille and Greff, 2005)

Discrete Calculus Philosophy

Separate Discretization
 from Approximation
 PDE -> LA
 LA -> square LA

- Do ALL discretization exactly.
- This means that the calculus and the physics remain exact.
- All approximations = interpolation problems.
- Numerical approximation only in material laws
(which are engineering approximations already)

Example: Heat Eqn

$$
\begin{array}{ll}
\frac{\partial i}{\partial t}=-\nabla \cdot \overrightarrow{\mathbf{q}} & \text { Conservation of Energy (Physics) } \\
i \approx \rho C T & \text { Perfectly Caloric Material (Mat.) } \\
\overrightarrow{\mathbf{q}} \approx-k \overrightarrow{\mathbf{g}} & \text { Fourier's Heat Flux Law (Mat.) } \\
\overrightarrow{\mathbf{g}}=\nabla T & \text { Def. of Gradient (Math) }
\end{array}
$$

- Discretize Physics and Math - exactly.
- Approximate Material laws - using interpolation

Exact Discretization

$$
\begin{aligned}
I_{c}^{n+1}-I_{c}^{n}=-\sum_{\text {faces }} \bar{Q}_{f}^{\text {out }} \quad \text { where } & I_{c}^{n+1}=\int_{\Omega_{c}} i d V \\
\text { Energy: FV approach. } & \bar{Q}_{f}=\int d t \int \mathbf{q} \cdot \mathbf{n} d A
\end{aligned}
$$

Not very interesting.

$$
\begin{array}{ll}
\overline{\mathbf{g}}_{c}^{n+1}=\left.\int_{\Omega_{c}} \nabla T d V\right|^{n+1}=\sum_{\text {faces }} \mathbf{n}_{f}^{\text {out }} \bar{T}_{f}^{n+1} & \overline{\mathbf{g}}_{c}^{n+1}=\left.\int_{\Omega_{c}} \overrightarrow{\mathbf{g}} d V\right|^{n+1} \\
\bar{T}_{f}^{n+1}=\frac{1}{A} \int T d A
\end{array}
$$

Math: Still Exact via Gauss' theorem. Different from all other mimetic methods.

Exact Discretization of Heat Eqn.

$$
\left[\begin{array}{cccc}
\mathbf{I} & \mathbf{D} & 0 & 0 \\
0_{d} & 0_{d} & \mathbf{- I}_{d} & \mathbf{N}_{d}
\end{array}\right]\left(\begin{array}{l}
I_{c}^{n+1} \\
\bar{Q}_{f} \\
\overline{\mathbf{g}}_{c}^{n+1} \\
\bar{T}_{f}^{n+1}
\end{array}\right)=\binom{I_{c}^{n}}{0_{d}}
$$

But not CLOSED. Too many unknowns.
$I_{c}^{n+1} \approx(\rho C)_{c} \sum_{\text {faces }} V_{c f} \bar{T}_{f}$
$-k_{c} \frac{\Delta t}{2}\left(\overline{\mathbf{g}}_{c}^{n+1}+\overline{\mathbf{g}}_{c}^{n}\right) \approx \sum_{\text {faces }} \mathbf{r}_{f} \bar{Q}_{f}$
-Material Constitutive Eqns
-Physical Approximation.
-Numerical Approximation.

- Interpolation Problem.

Summary of Keller Box

- Linear T in elements - Constant q in elements

$$
\left[\begin{array}{cc}
(\rho C)_{c} A_{f 2 c} & \mathbf{D} \\
\mathbf{N}_{d} & \frac{2}{\Delta k k_{c}} \mathbf{R}_{d}
\end{array}\right]\binom{\bar{T}_{f}^{n+1}}{\bar{Q}_{f}}=\binom{(\rho C)_{c} A_{f 2 c} \bar{T}_{f}^{n}}{-\mathbf{N}_{d} \bar{T}_{f}^{n}}
$$

Not symmetric.
Square matrix (for simplices).
Invertible. (but not with CG)
Cannot easily eliminate Qf.

Results

- KB is better than FV (due to higher accuracy).
- Other low-order DEC methods are better than KB.
- Log scale

Comparison

$$
\begin{array}{ll}
\overline{\mathbf{g}}_{c}^{n+1}=\left.\int_{\Omega_{c}} \overrightarrow{\mathbf{g}} d V\right|^{n+1}=\sum_{\text {faces }} \mathbf{n}_{f}^{\text {out }} \bar{T}_{f}^{n+1} \quad \mathrm{~KB} \\
\overline{\mathbf{g}}_{e}^{n+1}=\left.\int \overrightarrow{\mathbf{g}} \cdot d \mathbf{l}\right|^{n+1}=T_{2}^{n+1}-T_{1}^{n+1} & \text { Others }
\end{array}
$$

- KB has the gradient on elements.
- Others have it on primary or dual edges.
- KB has T as an integral unknown on faces.
- Others have T as a point value (0-form) at primary nodes or dual nodes (cell centers).

Exterior Calculus ?

$$
T_{n} \Rightarrow \nabla \Rightarrow g_{e} \Rightarrow \nabla \times \Rightarrow Q_{f} \Rightarrow \nabla \cdot \Rightarrow S_{c} \text { triangles }
$$

Node based
Cell based

$$
S_{\tilde{c}} \Leftarrow \nabla \cdot \Leftarrow Q_{\tilde{f}} \Leftarrow \nabla \times \Leftarrow g_{\tilde{c}} \Leftarrow \nabla \Leftarrow T_{\tilde{n}} \text { polygons }
$$

$$
\begin{array}{r}
T_{n} \Rightarrow \nabla \Rightarrow g_{e} \Rightarrow \nabla \times \Rightarrow \underset{\mathrm{KB}}{Q_{f} \Rightarrow \nabla \cdot \Rightarrow} S_{c} \\
? \Leftarrow \overrightarrow{\mathbf{g}}_{c} \Leftarrow \nabla \Leftarrow T_{f}
\end{array}
$$

Is the KB Scheme Related

to other Mimetic methods? Yes

- Captures Physics Well.
- Has an exact Discretization.
- Doesn't fit into DEC framework.
- Uses a fundamentally different exact gradient.

Summary

- KB has an Exact Discretization.
- KB is Mimetic.
- KB is an example where (classic) DEC may not work well to analyze the method.

