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ABSTRACT 

Predictions of the three-dimensional turbulent boundary
layer that results when two-dimensional channel flow is
suddenly subjected to a spanwise pressure gradient are
presented.  The recently developed turbulent potential
model is used to perform the calculations.  The
turbulent potential model demonstrates the ability to
capture the initial decrease in turbulent kinetic energy
and shear-stress, and accurately predicts the
development of the spanwise velocity and resulting
boundary layer skewing.  Results are compared with
direct numerical simulation data at a Reynolds number
of 3300.

INTRODUCTION

Reynolds Averaged Navier-Stokes (RANS) turbulence
models are usually concerned with modeling the
Reynolds stress tensor. An alternative approach to
RANS turbulence modeling has been proposed1,2 where
the primary modeled quantities are the scalar and vector
potentials of the turbulent body force - the divergence
of the Reynolds stress tensor.  This approach has been
found to have a number of attractive properties. The
most important of which is the ability to model
turbulence with the physical accuracy of Reynolds
stress transport models but at a cost and complexity
which is comparable to state-of-the-art k-ε models.

Like Reynolds stress transport equation models, the
proposed model does not require a hypothesized
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constitutive relation between the turbulence and the
mean flow variables.  This allows non-equilibrium
turbulence and complex three-dimensional flows to be
modeled effectively.  However, unlike Reynolds stress
transport equation models, the proposed system of
partial differential equations is much simpler to model
and compute.  It involves roughly half the number of
variables, no realizability conditions, and removes the
strong coupling between the equations.  An analysis of
the turbulent body force potentials and their physical
significance1 has revealed that they succinctly represent
the relevant information contained in the Reynolds
stress tensor and are fundamental turbulence quantities
in their own right.

The most common modeling hypothesis relating the
Reynolds stress tensor to the mean flow gradients is the
eddy viscosity model, )(k T

T3
2 uuIR ∇+∇ν−= , where

k is the turbulent kinetic energy and Tν  is the eddy
viscosity.  More complex nonlinear extensions to the
basic eddy viscosity hypothesis have been proposed3-5

and these Algebraic Reynolds stress models fix a
number of deficiencies in the standard linear eddy
viscosity model.  In particular, these nonlinear eddy
viscosity models remove the restriction that the
Reynolds stresses must be aligned with the mean flow
gradients, which makes the representation of three-
dimensional boundary layers theoretically possible.
However, another common feature of three-dimensional
boundary layers is that they are caused by significant
changes in the flow geometry, and the turbulence is
rarely allowed enough time to come into full
equilibrium with the mean flow.  Any algebraic
constitutive equation between the mean flow and the
Reynolds stresses, no matter how complex, relies on the
assumption that turbulent equilibrium is present. Other
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turbulent flows of practical engineering significance
which are not close to equilibrium include adverse
pressure gradient boundary layers and rapidly strained
flows.   The equilibrium assumption imbedded in any
constitutive relation for the Reynolds stress tensor is
emphasized here because the proposed model avoids
such a relation and therefore has the potential to predict
non-equilibrium turbulent flows such as three-
dimensional boundary layers more accurately.

There is some prior evidence that models which avoid a
constitutive relation for the Reynolds stress tensor (and
the associated equilibrium assumption) have the ability
to outperform other models of the same general class.
Both examples of this phenomenon come from models
developed for nearly parallel shear flows (where the
Reynolds shear stress is the important Reynolds stress).
For example, the zero-equation model of Johnson &
King6 solves an ordinary differential equation for the
maximum turbulent shear stress.  As a result it often
performs better than other zero-equation models which
use the traditional approach of defining an eddy
viscosity.   A similar result is also obtained with one
and two-equation models.  The model of Bradshaw,
Ferriss & Atwell7 was widely accepted to be the most
accurate model of the 1968 Stanford competition8. This
model differed from the competitors in that it solved an
equation for the shear stress directly, rather than using a
constitutive equation involving the mean shear.  The
principal drawback of both these methods (and
probably the reason that they are not more popular) is
that they can only be applied to nearly parallel shear
flows.  In a very loose sense, the proposed model can
be viewed as a way to generalize the modeling ideas of
Bradshaw et. al. to arbitrary flows.

In the past, for arbitrary flows the only alternative to
using a constitutive relation was to solve modeled
transport equations for the Reynolds stress tensor itself.
Reynolds stress transport models can potentially
contain more physics than eddy-viscosity based models,
however the equations are significantly more difficult
to solve.   In three-dimensions one must solve six
highly coupled transport equations for each Reynolds
stress.   The equations are stiff, and none of the
Reynolds stresses are universally dominant, so
uncoupling the equations numerically is very difficult.
In addition, the Reynolds stress tensor is a positive
definite tensor but the modeled equations often do not
preserve this property (realizability9).   The turbulent
potential model does not suffer from these difficulties.
It involves half the equations of a Reynolds stress

transport model.  The equations are not strongly
coupled and are not numerically stiff.

The key to developing a model which avoids the use of
a constitutive relation and yet does not involve the
complexity of a full Reynolds stress transport closure is
to note that the Reynolds stresses contain more
information than required by the mean flow.  Only the
divergence of the Reynolds stress tensor (a body force
vector) is required to solve for the mean flow.   With
this in mind, the potential turbulence model defines two
new turbulent quantities – the scalar and vector
potentials of the body force vector. The advantages of a
model that uses these turbulent potentials, rather than
the body force vector itself, are twofold.  Firstly, this
allows the momentum equation to remain a
conservative equation.  Secondly, and more
importantly, these potentials have a very clear physical
interpretation which will facilitate the construction of
models for their evolution.  Turbulence modeling based
on the force vector itself (or its rotational component –
the Lamb vector) have been proposed by Wu, Zhou &
Wu10, and Marmanis11, but the author is not aware of
any model results based on these ideas.

TURBULENT POTENTIALS

The scalar potential, φ, and vector potential, ψ , of the
turbulent body force are defined mathematically by the
following equations.

R⋅∇=×∇+φ∇ ψ     (1a)

0=⋅∇ ψ     (1b)

The second equation is a constraint on the vector
potential.  Other constraints are possible but this is the
simplest for the purposes of our analysis. These
equations can be rewritten to express the turbulent
potentials individually.

)(2 R⋅∇⋅∇=φ∇     (2a)

)(2 R⋅∇×− ∇=∇ ψ     (2b)

The boundary conditions on these elliptic equations are
constructed intuitively.  Both potentials are required to
go to zero at infinity, at a wall, or at a free surface.
Note that by its very definition (Eqn. 1a) the scalar
potential is the part of the turbulence that contributes to
the mean pressure but does not effect the mean
vorticity.  Only the vector potential has the ability to
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effect the mean vorticity, and it only moves the
vorticity around (enhanced transport), it does not create
or destroy mean vorticity.  Physically, we sometimes
find it useful to regard the scalar potential as a measure
of the average pressure drop in the cores of turbulent
vortices, and the vector potential as a measure of the
average vorticity magnitude of the turbulent vortices.

In flows with a single inhomogeneous direction (say the
y-direction), Eqns. (2a) and (2b) simplify to 22R=φ ,

231 R−=ψ , 02 =ψ , 123 R=ψ . For this reason, it is also
reasonable to view the vector potential as a conceptual
generalization of the shear stress ( 'v'u ) to arbitrary
geometries and three dimensions. In two-dimensional
mean flows the vector potential is aligned perpendicular
to the flow (like the vorticity) and has only a single
nonzero component ( 3ψ ).  The scalar potential (in
combination with the turbulent kinetic energy) gives a
good indication of the anisotropy of the turbulence and
is fundamental to modeling the presence of walls and/or
surfaces without using wall functions.  The scalar
potential is a positive semi-definite quantity in flows
with a single inhomogeneous direction.  It is
hypothesized that this is also true for arbitrary flows.

In three-dimensional flows the presence of the
divergence free constraint on the vector potential
implies that the vector potential can be computed at a
cost roughly equivalent to the scalar potential.  Since
the k and ε transport equations are also solved with the
model, the overall complexity and cost of solving the
potential model is four transport equations in two-
dimensions, and five transport equations in three-
dimensions.  This is only a slight reduction over the
number of equations using in a full Reynolds stress
transport equation closure (seven equations).  However,
the model  has significant computational advantages
because the equations are not as stiff as the Reynolds
stress transport equations so they can be numerically
uncoupled  and solved as individual advection-diffusion
equations.

TURBULENT POTENTIAL MODEL

The transport equations that constitute the turbulent
potential model are summarized below.

ε−+∇σν+ν⋅∇= Pk)/(
Dt
Dk

kT     (3a)

T 1 2 3 3D

ˆD ( / ) (C P C C P )
Dt kε ε ε ε
ε ε=∇⋅ν+ ν σ ∇ε+ β − ε+ (3b)
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 (3d)

where

ω⋅ψ=P , 3DP = ×ω ψ ,
ε
φ=ν µ
kCT , 1 / 2 2ˆ 2 ( k )ε = ε− ν ∇ ,

)5.11/(1 k
φ+=α ,   and  )/(kRe 2 νε= .

And the constants are given by:

8.0k =σ , 2.1=σε , 5.11 =εC , 83.12 =εC , 3 1C Cε ε=
2.4C 1p = , 5

3
2pC = , 6

7p3C = , p4C .12= .

The two constants given by fractions are determined by
matching Rapid Distortion Theory (RDT) in the case of
strongly sheared turbulence.  A detailed derivation of
these equations is found in Perot2.

Initially these equations appear daunting.  In fact, they
represent a fairly simple extension of the classic k-ε
equation system, and are relatively simple compared to
Reynolds stress transport equation models.  The second
source term in the potential equations (in parentheses)
is a dissipation-like term.  This term is a standard
dissipation model with two near-wall/surface
modifications, one for the dissipation and one for the
near wall pressure correlation term. These
modifications are active in the laminar sublayer and
allow the model to obtain the correct asymptotic
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behavior in the sublayer. The source terms involving
the constants 1pC  and 2pC  are pressure-strain
redistribution terms.  The slow pressure-strain is based
on return-to-isotropy and the fast pressure-strain is
based on isotropization of the production model.  The
constants are set to common values for these models.
The effects of system rotation and transition have been
incorporated in earlier versions of the model but are not
necessary in this context.

While the model includes transport equations for k and
ε  it should be emphasized that the proposed model is a
significant departure from standard two-equation
models. k and ε are  now auxiliary quantities that are
only used to help model the source terms in the
turbulent potential evolution equations.   They are not
used to determine the Reynolds stress tensor or the
resulting mean flow.  The elimination of the
constitutive equation for the Reynolds stresses is an
important departure that removes one of the weaker
modeling assumptions. A k-ω implementation could
easily be substituted for the current choice of k and ε.
If computational time is a serious issue, algebraic
models for either or both of these variables can be used.
In particular, for shear dominated flows such as
boundary layers, )/(2

3 φψψφ ⋅+= Ek and

ψ⋅ψ
φ

µ=ε kPC are good approximations. The latter
expression is equivalent to the linear eddy viscosity
hypothesis. However, it is not used to model the mean
flow, just the source terms in the evolution equations.
Computations of turbulent channel flow with these
algebraic expressions and 1.1=E showed a reasonable
agreement with the DNS data of Kim, Moin & Moser12.

Some of the important theoretical properties of the
model are summarized below:

• Correct decay of homogeneous isotropic
turbulence.

• Correct behavior in the log layer.
• Correct behavior for homogeneous shear flows

at early times or after the sudden introduction
of mean shear along a streamline.

• Correct behavior for homogeneous shear flows
at long times.

• Exact asymptotic behavior near walls.
• Exact asymptotic behavior at free surfaces.
• No functions of the wall normal distance.
• Stability/Numerical robustness (for the flows

tested to date).
• Low Reynolds number implementation.

• Exact transport equations (albeit unclosed)
from which to derive the model terms.

• No algebraic constitutive relations relating the
turbulence to the mean flow.

THREE-DIMENSIONAL EFFECTS

The equations for k and ε are the standard evolution
equations for these quantities with the exception of the
extra production term in the dissipation equation.  This
production term which appears in conjunction with the
additional constant 3Cε  is non-zero only in three-
dimensional flows.  In two dimensions both the
vorticity and the vector potential point out of the two-
dimensional plane.  They are therefore always aligned
and their cross product is zero.  In a three-dimensional
flow that is not in equilibrium, the vorticity will change
direction and the vector potential will lag behind.  The
cross product therefore gives a measure of the degree of
three-dimensionality in the flow.  This concept could be
used simply to quantitatively describe three-
dimensional boundary layers, but here we use it to our
advantage in the modeling of the dissipation evolution.

One important effect in three-dimensional boundary
layers is the evolution of the underlying turbulent
structures.  For example, in the suddenly spanwise
driven two-dimensional channel flow, the final state
will be a new two-dimensional channel flow at an angle
to the original flow and with a larger shear rate.
However, the final state takes a long time to achieve,
and the transient solution is actually the more
interesting solution.  When the two-dimensional
channel flow feels the spanwise pressure gradient, the
long near-wall streaks must turn. The streaks are the
dominant near-wall structures in turbulent boundary
layers.  It is hypothesized that the streaks break up
when they begin to turn and later reform into longer
streaks.  This breakup results in a smaller large-scale
length scale for the turbulence.  If we use the standard
approximation for the turbulent length scale,

3/2L k /= ε , then this implies that the dissipation should
increase and the turbulent kinetic energy should
decrease when the streaks are disrupted.

The previous analysis suggests that the k/ε system (Eqn.
3a and 3b) should be modified to include three-
dimensional effects.  For channel flow, the production
and dissipation terms in the k-equation are exact and
can not be modified, we therefore look to modify the
epsilon equation.  Since the cross-product of the
vorticity and the vector potential is a measure of the
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degree of three-dimensionality of the boundary layer,
we assume that the streak disruption is proportional to
the three-dimensionality.  The three-dimensionality
measure that is proposed has the units of production
and a form very similar to the turbulent kinetic energy
production.  For channel flow, the dot product of the
vorticity and the turbulent vector potential is an exact
expression for the production of the turbulent kinetic
energy.  It is therefore, not unreasonable to include the
cross-product of the vorticity and the turbulent vector
potential in the production term for the dissipation.
This has the effect of increasing the dissipation when
strong three-dimensional effects are present.  The
increase in dissipation then causes the counterintuitive
initial reduction in the turbulent kinetic energy and
shear stresses that is observed in direct numerical
simulations.

Durbin13 has also modeled spanwise driven channel
flow, and was the first to suggest that modifying the
dissipation equation is the critical element of modeling
three-dimensional boundary layers.  It should be noted
that in a standard k-ε models the vector potential and
the vorticity are always aligned even in three-
dimensional flows due to the linear eddy viscosity
hypothesis, so the additional dissipation production
term which is proposed here will be zero.  It is critical
to have a model for the turbulence which does not
assume this type of alignment in order to capture three-
dimensional boundary layers correctly.

SPANWISE DRIVEN CHANNEL FLOW

Spanwise driven channel flow at a mean flow Reynolds
number of 3300 was studied by Moin et. al.14 using
direct numerical simulation (DNS). Durbin later
modeled this flow with a Reynolds stress transport
model.  We now discuss the ability of the turbulent
transport model to predict this type of strongly non-
equilibrium three-dimensional boundary layer.  As
mentioned previously, in flows with a single
inhomogeneous direction (such as channel flow), the
turbulent body force potentials can be directly related to
the Reynolds stresses. 22R=φ , 231 R−=ψ  , 123 R=ψ .
This fact will be used to allow direct comparisons of the
model predictions with the direct numerical simulation
data for the Reynolds  stresses.

The DNS data is for a channel flow where the suddenly
applied spanwise pressure gradient is ten times the
streamwise pressure gradient.  The data is given at the

time of the spanwise pressure gradient application (t=0)
and at time increments of 0.3 thereafter up to a
nondimensional time of 0.9.  During this time the
spanwise velocity increases rapidly and reaches the
same order of magnitude of the streamwise velocity.
However, nondimensional turbulent large eddy turn-
over time is of the order of one, so it highly unlikely
that the turbulence could be considered to be in
equilibrium with the mean flow at any time during this
simulation.

The mean streamwise velocity is shown in figure 1.
The symbols are the DNS data and the solid lines are
the model predictions.  It is clear that neither the DNS
data nor the predictions show any significant change in
the streamwise velocity during this initial development
of the flow.

The mean spanwise velocity is shown in figure 2.  The
symbol convention remains the same in this and future
graphs.  Symbols are the DNS data of Moin et. al. and
the solid lines are the turbulent potential model
predictions.  The mean spanwise velocity is roughly
half the mean streamwise velocity at the final
measurement time (t=0.9).  The agreement with the
DNS data is very good.  But it is clear after comparing
with the streamwise velocity profile, that the spanwise
velocity profile is not yet a fully developed turbulent
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Figure 1. Streamwise mean velocity at times of
0.0, 0.3, 0.6 and 0.9 . Symbols are DNS data of
Moin et. al., solid lines are the turbulent potential
model predictions
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boundary layer profile.  The turbulence has only just
begun to effect the spanwise velocity profile at the final
time.  This good agreement of the spanwise velocity
can be attributed to the non-equilibrium nature of the
turbulent potential model.  An equilibrium model, such
as standard k/ε would apply the full turbulent eddy
viscosity to the spanwise velocity immediately and
cause the spanwise boundary layer to grow too rapidly.

The evolution of the mean velocity profiles is further
investigated by looking at the shear stresses.  The u ' v '
and u ' w '  shear stresses are shown in figure 3.  The
upper set of curves are the u ' v '  shear stress.  It is this
stress which influences the evolution of the mean
streamwise velocity.   The DNS data is given by the
symbols and the curves actually proceed from top to
bottom as t=0.0, 0.3, 0.9, 0.6.  The data is somewhat
scarce but general picture for this shear stress is that
initially it drops very slowly, between t=0.3 and t=0.6 it
drops much more rapidly and then after that it begins to
increase towards its initial value.   The model
predictions decrease monotonically, but display some
of the same qualitative behaviors.  The initial drop is
very small, and speeds up at later times.  While the
predictions do not look very good, there appears to
simply be a time delay in the predictions.  Model
predictions at a time t=1.2 (not shown) look very
similar to the DNS data at t=0.6.  We hope to

eventually remove this time lag, but the mean flow
predictions for the streamwise velocity show that, at
least at these early times, that this defect is not
fundamentally important.

The lower group of curves in figure 3 are for the u ' w '
shear stress.  The DNS data indicates that this stress
starts at zero and increases monotonically as time
proceeds.   At very long times, this stress would be
expected to be about ten times larger than the
streamwise u ' v '  shear stress.  However, at these early
times it remains relatively small, approaching 25% of
the u ' v '  shear stress at the final time (t=0.9).  The
turbulent potential model predictions (solid lines)
closely match the DNS at these early times.

The normal stress v ' v '  is shown in figure 4.  The
normal stress does not directly affect the mean flow
predictions as the shear stresses do, but it is important
in predictions of heat transfer, and scalar transport in
boundary layers.  The DNS data indicates that at very
early times the normal stress decreases extremely
slowly.  The data for time t=0 and time t=0.3 are on top
of each other.  After this the normal stress decreases
slowly with time.  This is thought to be a result of the
disruption of the near wall streaks into shorter streaky
structures and the enhanced dissipation that these
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Figure 3. Turbulent shear stress profiles at times of
0.0, 0.3, 0.6 and 0.9 . Symbols are DNS data of
Moin et. al., solid lines are the turbulent potential
model predictions.  Upper group of curves are
u ' v ' , lower group of curves are u ' w ' .
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Figure 2. Spanwise mean velocity at times of 0.0,
0.3, 0.6 and 0.9 . Symbols are DNS data of Moin
et. al., solid lines are the turbulent potential model
predictions
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shorter structures produce.  It takes some time for the
streaks to break up, and the dissipation to increase.  The
model predictions show roughly the same qualitative
behavior.  The initial decrease in the shear stress is very
slow, and accelerates as time proceeds.  As with the
u ' v '   shear stress, the normal stress does not drop as
quickly as the DNS results.  This is again attributed to
be due to the fact that the model lags the DNS data in
time.

The turbulent kinetic energy profiles are shown in
figure 5.  The DNS data shows the turbulent kinetic
energy decreasing in magnitude as time proceeds.
However, it should be noted that the decrease occurs
very slowly at first, rapidly between time t=0.3 and
time t=0.6, and then slowly again after that time. It is
hypothesized that the turbulent kinetic energy
magnitude will begin to increase soon after t=0.9, in
response to the ever increasing mean shear and
turbulence production.   At this very low Reynolds
number, the model predictions for the turbulent kinetic
energy are in considerable error even for the two-
dimensional channel flow at time t=0.    For two-
dimensional channel flow Reynolds numbers of 7500
and 11,000 the model shows much better agreement of
the turbulent kinetic energy with DNS data.   Despite,
the inaccuracy of the initial turbulent kinetic energy
profile, the turbulent potential model shows the correct

qualitative behavior in time.  Proceeding from top to
bottom the curves are at time 0.0, 0.3, 0.9, 0.6.  So the
turbulent kinetic energy actually drops to roughly the
correct value at t=0.6 and then begins to increase after
that time.

One important aspect of the turbulent potential model is
that, unlike the standard two equation models, the
accuracy of the turbulent kinetic energy has very little
impact on the over accuracy of the mean flow
predictions.  This is because k does not appear in the
mean flow evolution equation.  It only appears in the
modeling of the source terms in the turbulent potential
evolution equations.

CONCLUSIONS

The turbulent potential model demonstrates the ability
to accurately predict the mean flow behavior of the
suddenly spanwise driven channel flow at early times.
The turbulence quantities show a reasonable agreement
with the data and the correct qualitative trends both
spatially and temporally.

While the geometry of this unsteady three-dimensional
boundary layer is very simple, its behavior, particularly
at these early times, is complex.  The turbulence is not
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Figure 4. Normal stress, v ' v ' , profiles at times of
0.0, 0.3, 0.6 and 0.9 . Symbols are DNS data of
Moin et. al., solid lines are the turbulent potential
model predictions.
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Figure 5. Turbulent kinetic energy profiles at times
of 0.0, 0.3, 0.6 and 0.9 . Symbols are DNS data of
Moin et. al., solid lines are the turbulent potential
model predictions.
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in equilibrium with the rapidly changing mean flow.  In
addition to the well known skewing of the boundary
layer as one moves away from the wall, the turbulence
quantities display a counterintuitive magnitude drop
even while the overall magnitude of the mean shear
increases.

It is thought that the spanwise velocity profile and the
resulting boundary layer skewing are well captured
because the turbulent potential model is a non-
equilibrium model.  The lack of a constitutive equation
between the mean flow and the Reynolds stress tensor,
allows the spanwise shear stress, w ' v ' , to develop
slowly in time, rather than instantly appearing along
with the spanwise shear.

The drop in the turbulence quantities at early times is
explained physically as a disruption of the long streaks
in the near wall region into shorter structures.  This
disruption mechanism is modeled as an extra
production term in the dissipation equation.   This extra
term is zero in two-dimensional flows and its
magnitude is proportional to the degree of three-
dimensionality in three-dimensional flows.  Finally, this
extra term has a mathematical form that is closely
related to the turbulent kinetic energy production term
and is therefore aesthetically pleasing on modeling
grounds.
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