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ABSTRACT 

Simple fluids such as gases and liquids are the result of collisions between molecules.  More 
complex fluids, such as granular flows and colloidal suspensions (non-Newtonian fluids), result 
from the more complex collision (or interaction) behaviors of their constituent particles.  In this 
paper it is demonstrated that collision rules can be constructed for large chunks of fluid material 
(eddies) such that the resulting collective system behaves like the mean (RANS) flow of a 
turbulent fluid.   

The collision model approach has a number of advantages over classic Reynolds stress transport (RST) 
models.  For example, turbulent transport does not require a model and mathematical constraints like 
realizability are automatically satisfied.  Using some ideas from lattice-Boltzmann methods and 
adaptive moving mesh algorithms for CFD it is shown that this modeling approach can be made 
computationally efficient and comparable in cost to classic Reynolds stress transport (RST) 
models.  Finally, it is shown that the collisional approach to turbulence modeling can lead to some 
insights into turbulence and turbulence modeling that would probably not have been achieved via 
the traditional RST approach.   
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INTRODUCTION 

The traditional approach to modeling turbulence or non-Newtonian fluids is to hypothesize 
equations for the unknown stress tensor (in turbulence this is the Reynolds stress tensor).  Because, 
the eddies making up the flow are roughly the same size as the gradients in the mean flow these 
eddies respond on similar timescales as the mean flow.  This means that algebraic models are 
rarely predictive, and evolution equations for the stress tensor must be hypothesized.  In 
turbulence, these are the Reynolds stress transport (RST) equations.  Simpler turbulence models, 
such as the k-ε  model or algebraic Reynolds stress models, are simplifications of the RST 
equations.  



There is a strong analogy between turbulent fluid flow and Non-Newtonian or granular flows.   
Very similar to turbulent flows, transport equations are very often developed for non-Newtonian 
stress tensors (the Oldroyd-B model and FENE-P models are examples).  In fact, we note that 
many important turbulence modeling concepts (realizability, material frame indifference, tensor 
consistency) actually find their origins in the non-Newtonian literature at this transport equation 
level.   

However, it has long been recognized in the non-Newtonian fluid community that transport 
equation models have serious limitations.  An alternative approach is to model the fluid at the 
particle collision level rather than using a transport equation for the stress.  This approach is more 
versatile, and in many ways, more fundamental.  For example, modeling a gas as particles with 
binary elastic hard sphere collisions gives the Navier-Stokes equations and the perfect gas law 
when the density is high, as well as the correct gas behavior even when the density is low (when 
Navier-Stokes is not valid).  In this work we investigate the possibility of modeling turbulence as a 
collection of interacting particles. 

NUMERICAL SOLUTION OF COLLISION MODELS  

Once a certain collision behavior has been hypothesized there are three very different ways to 
solve the particle system numerically and obtain a prediction of the fluid behavior.  The most 
straightforward technique is the ‘molecular dynamics’ approach where one numerically tracks all 
the particles in the domain, and performs collisions when they occur.  This approach has a 
computational cost equivalent to large eddy simulation (LES) and is not considered further.   The 
other two approaches note that one does not really care what happens to individual particles but 
only what happens to particles on average.  The quantity of interest then becomes the probability 
density function that describes the probability that a particle (at a certain place and time) has a 
certain velocity.  The evolution of the probability distribution function, f, obeys the exact equation 
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where ia  is the acceleration due to external forces (like gravity) and the right-hand side describes 

the average affect of the collisions on the PDF.   It is this average collision behavior that we now 
wish the models to predict.    

There are two different ways to solve this PDF equation.  One way is to assume the collision 
model has a Fokker-Planck form (see equations 2 through 4).  Then using the equivalence between 
the Fokker-Planck equation and the Langevin equation (Brownian motion), it is possible to 
construct a Lagrangian particle method.  This is the approach extensively researched by Pope 
(1994, 2000) and coworkers.  The Lagrangian particles move like Brownian dust particles.  They 
move with the mean flow and are randomly perturbed using a prescription given by the model.  In 
this way each particle is independent from all the others, and simply interacts with the average of 
all the other particles.   This is less expensive than tracking and implementing individual collisions 
(‘molecular dynamics’ approach) but is still expensive because a large statistical sample of 
particles is required.   

The numerical approach used in this project was to solve the PDF equation using a standard 
Eulerian mesh in physical space, x, as well as in velocity space, v.   Normally, this approach would 
be rejected outright since 10 mesh points in each direction then requires a million mesh points 
(106) to mesh all six variables (x and v) and is too expensive.  The resolution to this problem is to 
use an extremely coarse mesh in the velocity space (3 points in each direction).   This means we 
are solving 27 equations for each point in space.  For comparison, a RST model solves 3 velocity, 



1 pressure, and 6 stress equations (10 equations) per point in space.  However, since the RST 
equations are highly coupled and nonlinear, and the PDF equations are not, the solution times are 
very comparable. 

A very coarse mesh in velocity space is an idea borrowed from Lattice-Boltzmann methods for 
solving the Navier-Stokes equations.   These methods solve a PDF equation with a very simple 
collision term that is intended to give Navier-Stokes (Newtonian) fluid behavior.   The difference 
here is that we solve a PDF equation with a much more complex collision term, which results in 
RANS behavior for the fluid.   The coarse mesh is acceptable in both cases because the interest is 
not in the PDF itself but in its lowest order moments - the mean flow and the stresses.    These low 
order moments can be reasonably extracted from a very coarse approximation of the PDF.   Note 
that the Langevin approach is 
equivalent to approximating the PDF 
with a random sample, and a large 
sample is needed even to 
approximate the low order moments 
reasonably well. The Langevin 
approach is slower because it 
provides more information (about 
the higher order moments).  
Unfortunately, we have little 
interest, in engineering turbulence 
models, in the extra information the 
Langevin solution method provides.   

While the approach taken in this work is inspired by the success of lattice-Boltzmann numerical 
methods, the approach is significantly different.   This is because the PDF governing molecular 
interactions (Lattice-Boltmann) has a variance (width) that is much larger than the mean and 
which is essentially constant (related to the speed of sound).   In contrast, the PDF for turbulence 
has a variance which is much smaller than the mean (turbulence intensities are measured in 
percent), and which can vary significantly (in time or space).  This is illustrated in Figure 2. 

To capture the turbulence PDF with only three points it is necessary to have a moving adaptive 

mesh in velocity space.   In order to avoid losses due to interpolating one mesh to another as the 
mesh moves, we implemented a fully conservative scheme in which the mesh moves continuously 
in time (during the timestep).   This uses technology previously developed by Perot & Nallapati 
(2003) for moving meshes in physical space.     In actual practice the PDF is three-dimensional.  
An isosurface of an actual PDF (the 50% value) is shown in Figure 3.  This PDF is modeling the 
behavior of the Le Penven et al (1985) return-to-isotropy Case III > 0 experiment.  Note the fairly 
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Figure 1. Taxonomy of collision model approaches. 

 
 
 
 
 
 
 
 
 
 

Figure 2: Left: typical PDF for molecules.  Right: typical PDF for turbulence. 
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large changes in the shape and size of the distribution even for this simple experiment.  It can also 
be seen in this figure that a spherical PDF corresponds to isotropic turbulence. 

 

THEORETICAL ANALYSIS 

Lundgren (1967) first derived the exact expression for the collision term in the PDF evolution 
equation for turbulence.  As might be expected, this collision term can not be expressed solely in 
terms of the PDF, and solution of the PDF evolution equation requires a model for the collision 
term.   In this work we have focused on generalizations of the Fokker-Plank collision term.  In its 
simplest form this collision term has the form, 

 ( )
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where i iu v f d= ∫ v  is the mean velocity and a and b are model constants.  For turbulence this needs 

to be generalized.  Pope and coworkers use the form,  
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where ' j j jv v u= −  is the fluctuating velocity and  the first term (the drift term) now has a matrix 

model parameter ijG , and a viscous term has been added for near wall  (low Re number) 

calculations.  The conversion of these Fokker-Planck models to a Langevin equation for numerical 
solution dictates that the diffusion term (with b) be isotropic and not have a tensor coefficient. 

In this paper we analyzed the following even more generalized Fokker Plank model.  
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The last term on the right hand side accounts (exactly) for the mesh motion.  The first three terms 
involve model tensors.  Sometimes, these tensors are isotropic and governed by a single parameter.  

 
Figure 3: Evolution of the 50% isosurface of the PDF for the return-to-isotropy experiment of Le 

Penven et al. (case III > 0). 



The viscous terms account for low Reynolds number effects and strong inhomogeneity.  They do 
not involve any additional parameters and were derived via analysis and the condition that the 
model be exact as it approaches a wall (in the laminar sub layer).     

The zeroth moment of the PDF equation (Eqn 4) is the mass conservation equation.   The first 
velocity moment of the PDF equation gives the momentum equation,   

 ,
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This implies that the acceleration is given by , , ,( )n n i n ia p uµ= − + .  The viscous contribution to this 

acceleration is necessary only if the viscosity is not constant.  Taking the moment of the modeled 
PDF equation with respect to ' 'n mv v  gives the Reynolds stress transport equation, 
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where ' ' 'nmi n m iT v v v fd= ∫ v and 1
2 iiK R=  is the turbulent kinetic energy.  The tensors ijG , ijH , and 

ijJ  determine the model.  Complex dissipation and pressure-strain models can be implemented via 

these tensors.   

The equation for the total resolved (or mean) kinetic energy, 1 1
2 2r i i iiE v v fd R= −∫ v , is  
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The resolved kinetic energy correctly loses energy as a result of large scale dissipation, and via 
turbulence production.  It is completely specified and does not depend on the model coefficients.   
The details of these derivations can be found in Chartrand (2004). 

When implementing the Fokker-Planck collision model (Eqn. 4) on a coarse mesh, it is attractive 
to make the change of variables ˆ ln( )f f= .   If f is close to Gaussian (which is expected) then f̂  
will be close to parabolic.  This parabola can be accurately resolved and interpolated by the three 
points available in our scheme.   The evolution equation for f̂  is, 
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While there are more terms to compute in this version, the equation for ̂f  is much more accurate 
to solve numerically.  In addition, low order methods and simple (3 point) difference stencils 
suffice because ̂f  is expected to be very close to quadratic.   

The models for the tensors ijG , ijH , and ijJ  require a time scale to be dimensionally correct.  For 

this reason an additional transport equation for the timescale must be included in the model.  We 
have used the standard epsilon transport equation for this purpose since it is very commonly used 
in RST models as well.   

SUMMARY OF THE MODEL 

The collision model used in this paper is given by, 
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 is the modified dissipation that goes to zero in regions of 

strong inhomogeneity such as near walls, and ,nm n mP R u= −  is the standard turbulent production 

rate.   The frame invariant strain-rate and rotation-rate tensors are respectively , ,

1
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2
ij i j j i ijk kW u u ε= − + Ω , where kΩ is the rotation rate of a non-inertial frame of reference.   

For comparison with classic RST models, the equivalent Reynolds stress transport equation would 
be, 
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Note that the model constant dC  does not effect the Reynolds stress transport equation.  However, 

it does have an effect on the higher order moments (such as imnT ) and the turbulent transport term.   

This constant can be related to the Kolmorgorov constant (Pope, 2000).  The other model constants 
are actually parameters and are given by, 
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where the eddy viscosity is given by 
2

.12
ˆt

K
Fν

ε
=  and 27

8 det( / )ijF R k=  is the standard two-

component parameter that is 1 in isotropic turbulence and 0 for two-component turbulence. 

The transport model for the epsilon equation is standard and is given by, 

 1 2 3
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where 1C 1.43ε = , 2C 11/ 6ε = , 3C 0.83ε = , and fairly standard values.     

SUMMARY OF RESULTS  

The model was tested on anisotropic decaying turbulence.  This is essentially a test of the models 
ability to correctly predict slow pressure-strain or return-to-isotropy.  The eddy collision model has 
no model constants associated with return to isotropy.   In classic RST models, return to isotropy is 
parameterized by at least the Rotta constant (Rotta, 1951), and quite frequently by an additional 
return constant to parameterize nonlinear return effects.   The Sarkar & Speziale (1990) model is 
an example of a two parameter nonlinear return model.   The derivation of the parameter-free eddy 
collision return model is found in Perot & Chartrand (2004).  This parameter-free model is 
nonlinear, and strongly realizable, and was discovered as a direct result of the collisional model 
framework.   

Two different experiments (Choi & Lumley (2001) and Le Penven et al (1985)) and five different 
data sets were used to evaluate the performance of the model in figures 4 and 5.  Except for Le 
Penven case III<0 (where all models show difficulty) the parameter-free model agrees well with 
experimental data. 
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Figure 4: Reynolds stresses for Choi and Lumley.  (a) Case A, (b) Case B, (c) Case C-2.  Symbols 
are the experimental data, lines are the Rotta model predictions (CR = 0.8), the dashed lines are 

the SS model predictions (CR=0.8, CN=0.8),  and large dashed lines are the current model 
predictions. 



Next the model was tested in a variety of homogeneous shear flows.  They key to predicting these 
flows correctly is in the modeling of the fast pressure-strain.   In the current model three 
parameters are devoted to the modeling of the fast pressure-strain.  The performance of the model 
is shown in figure 6.   In the absence of rotation, the current model performs well.  The final figure 
shows the turbulent kinetic energy in a shear flow as a function of time at three different rotation 
rates.  Only the zero rotation case (upper curve) is well predicted.   

Finally, the model was implemented and tested in fully developed channel flow at Re=590.  The 
results are shown in figure 7.  The issue in channel flow is to correctly account for inhomogeneity 
and low Reynolds number effects.   In this situation, the modeling of the dissipation tensor 
requires close attention.  This term dominates near the wall and balances viscous diffusion.  
Details of the dissipation model are found in Perot & Natu (2003).  The model for the dissipation 
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Figure 5: Reynolds stresses from Le Penven, Gence and Comte-Bellot. 

(a) case III>0, (b) case III<0.  See Figure 4 for Legend. 
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Figure 6: Eddy collision model applied to homogeneous shear flows.   Symbols are 
experimental or DNS data.  Lines are the model predictions. 



tensor is exact in regions of strong inhomogeneity and involves no model parameters.   The second 
to last term in Eqn. 4 is due to this dissipation model.   The fact that the model is exact in this limit 
is important.  It means that the diffusion is exactly balanced at the wall, and therefore that the 
Reynolds stresses always have the correct asymptotic limits near a wall.   This means that elliptic 
relaxation approaches are not required.  In addition, computational stability is significantly 
enhanced since this is the region where Reynolds stresses are close to becoming unrealizable.  

 

 

CONCLUSIONS 

This paper demonstrates that collisional models are a viable alternative to RST models.  In one 
instance, we have even been able to remove a model parameter due to insights gained from this 
viewpoint.  However, it is also clear that this approach, as it stands, has most of the same 
difficulties and limitations of RST models.  In particular, the fast pressure-strain model largely 
dictates the model’s performance in flows with mean flow gradients (most flows).   Fast pressure-
strain models have many constants and a great deal of predictive uncertainty associated with them.  
In addition, the scale (or epsilon) transport equation remains (as with RST models) a source of 
significant error and parameterization (many constants).   Finally, although we have used Lattice-
Boltzmann discretization ideas, the implementation of these collision models is not as 
computationally efficient as classic Lattice-Boltzmann methods.  A moving adaptive mesh is 
required making the method computationally comparable to RST models. 
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Figure 7: Turbulent channel flow at Re=590.  Symbols are the DNS data of Moser et al., lines are the 

model predictions.  (a) Mean velocity, (b) Turbulent kinetic energy, (c) Dissipation rate, 
(d) R11, (e) R22, (f) R33, (g) R12. 
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