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ABSTRACT

Simple fluids such as gases and liquids are theltre$ collisions between molecules. More
complex fluids, such as granular flows and collbisiaspensions (non-Newtonian fluids), result
from the more complex collision (or interaction)hbgiors of their constituent particles. In this
paper it is demonstrated that collision rules carcbnstructed for large chunks of fluid material
(eddies) such that the resulting collective systaghaves like the mean (RANS) flow of a
turbulent fluid.

The collision model approach has a number of adgastover classic Reynolds stress transport (RST)
models. For example, turbulent transport doesewtire a model and mathematical constraints like
realizability are automatically satisfied. Usingnee ideas from lattice-Boltzmann methods and
adaptive moving mesh algorithms for CFD it is shawat this modeling approach can be made
computationally efficient and comparable in costdassic Reynolds stress transport (RST)
models. Finally, it is shown that the collisiomglproach to turbulence modeling can lead to some
insights into turbulence and turbulence modelirag thiould probably not have been achieved via
the traditional RST approach.
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INTRODUCTION

The traditional approach to modeling turbulence non-Newtonian fluids is to hypothesize
equations for the unknown stress tensor (in turizdehis is the Reynolds stress tensor). Because,
the eddies making up the flow are roughly the saine as the gradients in the mean flow these
eddies respond on similar timescales as the mean flIThis means that algebraic models are
rarely predictive, and evolution equations for thieess tensor must be hypothesized. In
turbulence, these are the Reynolds stress tran@R8i) equations. Simpler turbulence models,
such as the k-model or algebraic Reynolds stress models, are lisicagions of the RST
equations.



There is a strong analogy between turbulent fliidvfand Non-Newtonian or granular flows.
Very similar to turbulent flows, transport equasoare very often developed for non-Newtonian
stress tensors (the Oldroyd-B model and FENE-P feagl® examples). In fact, we note that
many important turbulence modeling concepts (rahblity, material frame indifference, tensor
consistency) actually find their origins in the ANBwtonian literature at this transport equation
level.

However, it has long been recognized in the nondeian fluid community that transport
equation models have serious limitations. An ali&ve approach is to model the fluid at the
particle collision level rather than using a trasr$@quation for the stress. This approach is more
versatile, and in many ways, more fundamental. é&s@mple, modeling a gas as particles with
binary elastic hard sphere collisions gives the i&la8tokes equations and the perfect gas law
when the density is high, as well as the correstlgghavior even when the density is low (when
Navier-Stokes is not valid). In this work we intigate the possibility of modeling turbulence as a
collection of interacting particles.

NUMERICAL SOLUTION OF COLLISION MODELS

Once a certain collision behavior has been hypatedsthere are three very different ways to
solve the particle system numerically and obtaiprediction of the fluid behavior. The most
straightforward technique is the ‘molecular dynah&pproach where one numerically tracks all
the particles in the domain, and performs collisiomhen they occur. This approach has a
computational cost equivalent to large eddy sinnte(LES) and is not considered further. The
other two approaches note that one does not reatly what happens to individual particles but
only what happens to particles on average. Thatgyaf interest then becomes the probability
density function that describes the probabilityt thgparticle (at a certain place and time) has a
certain velocity. The evolution of the probabildistribution functionf, obeys the exact equation
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collisions

where g is the acceleration due to external forces (likevigy) and the right-hand side describes

the average affect of the collisions on the PDIEis this average collision behavior that we now
wish the models to predict.

There are two different ways to solve this PDF ¢éiqua One way is to assume the collision
model has a Fokker-Planck form (see equationsadgiir 4). Then using the equivalence between
the Fokker-Planck equation and the Langevin egomaBrownian motion), it is possible to
construct a Lagrangian particle method. This i @ipproach extensively researched by Pope
(1994, 2000) and coworkers. The Lagrangian padichove like Brownian dust particles. They
move with the mean flow and are randomly pertunsgidg a prescription given by the model. In
this way each patrticle is independent from all akieers, and simply interacts with the average of
all the other particles. This is less expendhanttracking and implementing individual collisions
(‘molecular dynamics’ approach) but is still expeesbecause a large statistical sample of
particles is required.

The numerical approach used in this project wasdiwe the PDF equation using a standard
Eulerian mesh in physical spageas well as in velocity space, Normally, this approach would
be rejected outright since 10 mesh points in eadctibn then requires a million mesh points
(10°) to mesh all six variables @ndv) and is too expensive. The resolution to thisofem is to
use an extremely coarse mesh in the velocity s@peints in each direction). This means we
are solving 27 equations for each point in spdéa: comparison, a RST model solves 3 velocity,



1 pressure, and 6 stress equations (10 equati@nspgint in space. However, since the RST
equations are highly coupled and nonlinear, and’DE equations are not, the solution times are
very comparable.

A very coarse mesh in velocity space is an ideaolad from Lattice-Boltzmann methods for
solving the Navier-Stokes equations. These matlsoive a PDF equation with a very simple
collision term that is intended to give Navier-Stel{Newtonian) fluid behavior. The difference
here is that we solve a PDF equation with a muchensomplex collision term, which results in
RANS behavior for the fluid. The coarse meshciseptable in both cases because the interest is
not in the PDF itself but in its lowest order mornsenthe mean flow and the stresses. These low
order moments can be reasonably extracted fronmyacgarse approximation of the PDF. Note
that the Langevin approach is
equivalent to approximating the PD™
with a random sample, and a lar¢
sample is needed even 1
approximate the low order momen

reasonably well. The Langevil PDF Methods Particle Tracking

approach is slower because (‘molecular dynamics’)
provides more information (abou /\
the higher order moments,

Unfortunately, we have little Coarse Discretization Langevin Equation

interest, in engineering turbulenc (lattice methods’) (Lagrangian particle methods)
models, in the extra information th o

Langevin solution method provides. Figure 1 Taxonomy of collision model approact

Collision Models

While the approach taken in this work is inspirgdthe success of lattice-Boltzmann numerical
methods, the approach is significantly differenthis is because the PDF governing molecular
interactions (Lattice-Boltmann) has a variance t)idhat is much larger than the mean and
which is essentially constant (related to the spefexzbund). In contrast, the PDF for turbulence
has a variance which is much smaller than the n{aabulence intensities are measured in
percent), and which can vary significantly (in tiorespace). This is illustrated in Figure 2.

To capture the turbulence PDF with only three ihtis necessary to have a moving adaptive

Figure 2: Left: typical PDF for molecules. Rigtyipical PDF for turbulence.

mesh in velocity space. In order to avoid loshes to interpolating one mesh to another as the
mesh moves, we implemented a fully conservativesehin which the mesh moves continuously
in time (during the timestep). This uses techgylpreviously developed by Perot & Nallapati
(2003) for moving meshes in physical space. adtual practice the PDF is three-dimensional.
An isosurface of an actual PDF (the 50% valueh®as in Figure 3. This PDF is modeling the
behavior of the Le Penven et al (1985) return-tarigoy Case 11l > 0 experiment. Note the fairly



large changes in the shape and size of the distibeven for this simple experiment. It can also
be seen in this figure that a spherical PDF comedg to isotropic turbulence.

Figure 3: Evolution of the 50% isosurface of theFDr the return-to-isotropy experiment of Le
Penveret a. (caselll > 0).

THEORETICAL ANALYSIS

Lundgren (1967) first derived the exact expressmnthe collision term in the PDF evolution
equation for turbulence. As might be expected; daillision term can not be expressed solely in
terms of the PDF, and solution of the PDF evolugguation requires a model for the collision
term. In this work we have focused on generabnatof the Fokker-Plank collision term. In its
simplest form this collision term has the form,

df
dt
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whereu =j\4 fdv is the mean velocity aralandb are model constants. For turbulence this needs
to be generalized. Pope and coworkers use the form
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wherev', =v, -y is the fluctuating velocity and the first terrhétdrift term) now has a matrix
model parametelG,, and a viscous term has been added for near vwmilv Re number)

ij !
calculations. The conversion of these Fokker-R{anodels to a Langevin equation for numerical
solution dictates that the diffusion term (withbe isotropic and not have a tensor coefficient.

In this paper we analyzed the following even maeayalized Fokker Plank model.
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The last term on the right hand side accounts (Bg&dor the mesh motion. The first three terms
involve model tensors. Sometimes, these tenserisatropic and governed by a single parameter.



The viscous terms account for low Reynolds numlffects and strong inhomogeneity. They do
not involve any additional parameters and werevedrivia analysis and the condition that the
model be exact as it approaches a wall (in therlansub layer).

The zeroth moment of the PDF equation (Eqn 4) ésrttass conservation equation. The first
velocity moment of the PDF equation gives the manmarequation,

ou, , 0Uy+R)__ _ 0

—n4 i/ —q =— . 5

~ x e (v, ] (5)
This implies that the acceleration is givendgy=-p,+(xu ,);. The viscous contribution to this

acceleration is necessary only if the viscositgas constant. Taking the moment of the modeled
PDF equation with respect t0, V', gives the Reynolds stress transport equation,
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whereT,, :jv Vi,V fdrand K =3 R; is the turbulent kinetic energy. The tensGfs H;, and

J; determine the model. Complex dissipation andsunesstrain models can be implemented via
these tensors.
, 1S

The equation for the total resolved (or mean) kinetergy, E, :J'%v,\( fdr -3
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The resolved kinetic energy correctly loses enexg\a result of large scale dissipation, and via
turbulence production. It is completely specifatd does not depend on the model coefficients.
The details of these derivations can be found iar€and (2004).

When implementing the Fokker-Planck collision mog@&n. 4) on a coarse mesh, it is attractive
to make the change of variablds= In(f). If fis close to Gaussian (which is expected) tifen
will be close to parabolic. This parabola can beuaately resolved and interpolated by the three
points available in our scheme. The evolutionagign for fis,
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While there are more terms to compute in this wersihe equation fof is much more accurate
to solve numerically. In addition, low order metlsoand simple (3 point) difference stencils
suffice becausd is expected to be very close to quadratic.

The models for the tensof3;, H; , and J; require a time scale to be dimensionally correr

this reason an additional transport equation fertitmescale must be included in the model. We
have used the standard epsilon transport equatiothit purpose since it is very commonly used
in RST models as well.

SUMMARY OF THE MODEL

The collision model used in this paper is given by,
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where §=£(1+10/‘(\/K)_‘ /K) is the modified dissipation that goes to zero egions of
strong inhomogeneity such as near walls, &wd—-R, u, ., is the standard turbulent production

. . , . , 1
rate. The frame invariant strain-rate and rotatiate tensors are respectlveﬂyza(q,j +4)

and W; = %(qj - ;) + & , whereQ, is the rotation rate of a non-inertial frame ofereince.

For comparison with classic RST models, the egaivaReynolds stress transport equation would
be,
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Note that the model consta@}, does not effect the Reynolds stress transporttegquaHowever,
it does have an effect on the higher order momgsuish asT, ) and the turbulent transport term.

This constant can be related to the Kolmorgorowstamt (Pope, 2000). The other model constants
are actually parameters and are given by,
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2
where the eddy viscosity is given by=.12FK? and F =4 det(R, /k) is the standard two-

component parameter that is 1 in isotropic turbegeand O for two-component turbulence.
The transport model for the epsilon equation isddiad and is given by,
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whereC,, =1.43, C_, =11/6, C_ = 0.83, and fairly standard values.

SUMMARY OF RESULTS

The model was tested on anisotropic decaying tartmd. This is essentially a test of the models
ability to correctly predict slow pressure-straireturn-to-isotropy. The eddy collision model has
no model constants associated with return to ipgtroln classic RST models, return to isotropy is
parameterized by at least the Rotta constant (Rb®al), and quite frequently by an additional

return constant to parameterize nonlinear retufecef. The Sarkar & Speziale (1990) model is
an example of a two parameter nonlinear return modée derivation of the parameter-free eddy
collision return model is found in Perot & Charwa@@004). This parameter-free model is

nonlinear, and strongly realizable, and was disees a direct result of the collisional model

framework.

Two different experiments (Choi & Lumley (2001) abel Penven et al (1985)) and five different
data sets were used to evaluate the performanteeahodel in figures 4 and 5. Except for Le
Penven case 111<0 (where all models show difficultye parameter-free model agrees well with
experimental data.
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Figure 4: Reynolds stres: for Choi and Lumley. (a) Case A, (b) Case B,Gape C-2. Symbols
are the experimental data, lines are the Rotta hpyddictions (CR = 0.8), the dashed lines are
the SS model predictions (CR=0.8, CN=0.8), angdatashed lines are the current model
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Figure 5: Reynolds stresses from Le Penven, Geamt€amte-Bellot.
(a) case 111>0, (b) case Il1I<0. See Figure 4 fegend.

Next the model was tested in a variety of homogeseahear flows. They key to predicting these
flows correctly is in the modeling of the fast mese-strain.  In the current model three

parameters are devoted to the modeling of thepi@sisure-strain. The performance of the model
is shown in figure 6. In the absence of rotatibwe, current model performs well. The final figure

shows the turbulent kinetic energy in a shear fé®aa function of time at three different rotation

rates. Only the zero rotation case (upper curvelell predicted.
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Figure 6: Eddy collision model applied to homogarseshear flows. Symbols are
experimental or DNS data. Lines are the modeliptieds.

Finally, the model was implemented and tested lly leveloped channel flow at Re=590. The
results are shown in figure 7. The issue in chbfiow is to correctly account for inhomogeneity
and low Reynolds number effects. In this situatithe modeling of the dissipation tensor
requires close attention. This term dominates rikarwall and balances viscous diffusion.
Details of the dissipation model are found in P&adtiatu (2003). The model for the dissipation



tensor is exact in regions of strong inhomogenaity involves no model parameters. The second
to last term in Eqgn. 4 is due to this dissipatiomdel. The fact that the model is exact in thistli

is important. It means that the diffusion is ekattalanced at the wall, and therefore that the
Reynolds stresses always have the correct asymitotts near a wall. This means that elliptic
relaxation approaches are not required. In additmomputational stability is significantly
enhanced since this is the region where Reynoldss&s are close to becoming unrealizable.
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Figure 7: Turbulent channel flow at Re=590. Syrmslak the DNS data of Moser et al., lines are the
model predictions. (a) Mean velocity, (b) Turbulkmetic energy, (c) Dissipation rate,
(d) Ru1, (€) R (f) Rsa, (9) Rz

CONCLUSIONS

This paper demonstrates that collisional modelsaavéable alternative to RST models. In one
instance, we have even been able to remove a rpadameter due to insights gained from this
viewpoint. However, it is also clear that this eggrh, as it stands, has most of the same
difficulties and limitations of RST models. In gaudlar, the fast pressure-strain model largely
dictates the model’s performance in flows with méaw gradients (most flows). Fast pressure-
strain models have many constants and a greabfipadictive uncertainty associated with them.
In addition, the scale (or epsilon) transport emuatemains (as with RST models) a source of
significant error and parameterization (many camsja Finally, although we have used Lattice-
Boltzmann discretization ideas, the implementatioh these collision models is not as
computationally efficient as classic Lattice-Bolanm methods. A moving adaptive mesh is
required making the method computationally complar&abRST models.
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