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ABSTRACT

The turbulent potential model is a RANS model that avoids modeling the Reynolds stress tensor. As a
result it has the ability to obtain the physical accuracy of Reynolds stress transport equation models at
a cost and complexity comparable to popular two equation models. The model’s ability to predict
channel flow, free-shear layers, homogeneous shear flow, stagnation point flow, backward facing step
flows, and boundary layers with and without strong adverse pressure gradients has been demonstrated
previously. In the present study, the performance of the turbulent potential model is evaluated in a
series of complex non-equilibrium turbulent flows. These include three-dimensional boundary layers,
unsteady vortex shedding, rotating turbulent flows and boundary layer transition.
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INTRODUCTION

Typical Reynolds Averaged Navier-Stokes (RANS) turbulence models are ultimately concerned with
modeling the Reynolds stress tensor. Solution of the partial differential equations governing the
evolution of the Reynolds stress tensor (Reynolds stress transport equation models) can be complex to
implement, and expensive to solve numerically due to inherent stiffness and coupling of the equations.
Simpler and less expensive RANS models, such as two equation models, algebraic Reynolds stress
models, and augmented two equation models use a constitutive relation between the Reynolds stress
tensor and the mean flow variables. Such a relation assumes that some sort of equilibrium exists
between the turbulence and the driving mean flow. However, in complex turbulent flows involving
large-scale unsteadiness, rotation, rapid geometrical changes, transition, and other complex phenomena
the assumption of turbulent equilibrium may not be well founded.

The turbulent potential model is a compromise between these two approaches. It makes no
equilibrium assumptions, but has a computational cost and implementation complexity comparable to
modern low Reynolds number two-equation models. This compromise is possible because the model



no longer attempts to model the Reynolds stress tensor. Only the turbulent body force vector (the
divergence of the Reynolds stress tensor) is required to predict the mean flow evolution, and the
turbulent potential model solves modeled evolution equations for the scalar and vector potentials of
this turbulent body force vector. In mathematical terms the potentials are prescribed by the
expressions VeR=V@+Vxy and Vey=0. The latter expression is a gauge restriction, and the

divergence free gauge was chosen for its simplicity. The potentials are assumed to be turbulent
quantities that vanish when the turbulence vanishes, such as at walls or in the laminar free-stream.

The model focuses on the potentials rather than the body force vector itself because momentum
conservation is then guaranteed, and because the potentials have a physical interpretation which can be
used to guide the model development (Perot, 1996). The scalar potential can be viewed as a turbulent
pressure, and in an incompressible flow this quantity could be absorbed directly into the pressure.
However, we continue to carry it as an independent quantity in the model because it is an excellent
indicator of turbulence anisotropy. It behaves similarly to the v* variable used in the elliptic relation
models of Durbin (1995). Despite the similarity in function, the evolution equation for the scalar
potential is very different from the evolution equation for v*. The turbulent potential modeling
framework has the ability to include ellipticity, but does not currently do so at this time. Rather than
using ellipticity to obtain correct near wall behavior, the current model uses asymptotically exact near
wall dissipation and pressure strain models. The vector potential acts as a generalization of the
Reynolds shear stress. In two-dimensional flows, the vector potential points out of the plane of interest
(like vorticity) and only has one non-zero component. If one assumes an eddy viscosity hypothesis
(which we do not), then it can be shown that the vector potential is directly proportional to the mean
vorticity, Y =V, ®.

The efficacy of the turbulent potential modeling approach was demonstrated in Perot (1999) on very
fundamental turbulent flows, including boundary layers, free-shear layers, adverse pressure gradient
boundary layers, and the backward facing step. In this work, we have tested the model in more
physically demanding turbulent flows, in order to demonstrate it ability to predict flows in which
turbulent non-equilibrium is present.

TURBULENT POTENTIAL MODEL

The transport equations that constitute the turbulent potential more are summarized below. Comments
about the derivation of specific terms in these equations can be found in Perot (1999).
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where Q is the external frame rotation rate,

P=ys,v, =C,%, a=/(1+1.5¢j, ¢=¢/(l+100VE k), d=0+20Q
€ K

and the model constants are given by:
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The k-¢ constants are close to the standard values and are given by,
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Despite the inclusion of k and € transport equations, this should not be viewed as a variation of the k-¢
modeling approach. These extra variables are only used to model the source terms in the turbulent
potential transport equations, they are not used to predict the Reynolds stresses or calculate the
influence of the turbulence on the mean flow evolution. Only the vector potential directly influences
the mean flow evolution in the flows studied herein. The vector s in the production term is defined by

the equation V>(¢s) = Vx{Ve(S@)}, where S is the rate of strain tensor. In flows with a single
inhomogeneous direction (e.g. boundary layer flows), it can be shown that s is equal to the vorticity.

THREE-DIMENSIONAL BOUNDARY LAYERS

Three-dimensional boundary layers are an example of a type of flow in which the turbulence does not
have time to reach equilibrium with the mean flow. When two-equation models are applied to 3D
boundary layers, they usually yield poor results (Fannelop et. al. 1975, Bradshaw et. al. 1996). It is
nearly impossible to model all the Reynolds shear-stresses correctly with only a single scalar eddy
viscosity. The study conducted by Olgmen & Simpson (1993) shows that using more complicated
algebraic (or nonlinear) eddy-viscosity models improves the performance of the models on slightly.
The models that accounted for the anisotropy of the eddy viscosity in general performed better but the
anisotropic constants had to be changed for different flows. The turbulent potential model has been
tested on spanwise driven channel flow and the flow over an infinite swept bump.

The spanwise driven channel flow is regular fully-developed channel flow suddenly subjected to a
large spanwise pressure gradient at time zero. A DNS simulation of this flow at a bulk velocity
Reynolds number of 3300 was performed by Moin et al. (1990). It has been modeled by Durbin
(1993) using an elliptic Reynolds stress transport equation model. The turbulent potential model
predictions for the mean velocity and Reynolds shear stresses are shown in Figure 1. The DNS results
and the model show almost no change in the streamwise velocity (Figure 1a) over the time of the
simulations. The mean spanwise velocity (Figure 1b) increases monotonically in time and the model
predictions (lines) closely match the DNS results (symbols) at non-dimensional times (fu,/h) of 0.3,

0.6 and 0.9. Note that the spanwise boundary layer is essentially a laminar developing layer at these
early times. A simple two equation model would show excessive growth of this layer because it would
apply the fully turbulent eddy viscosity of the streamwise flow to the spanwise boundary layer
development. The Reynolds shear stresses are shown in Figure 1c. The upper set correspond to the
shear-stress for the streamwise velocity and the lower set of curves are the shear-stress corresponding
to the spanwise velocity. The unique configuration of this flow allows us to directly determine some
of the Reynolds stress from the turbulent potentials, but in general the model actively avoids solving
for Reynolds stresses, and Reynolds stresses are not easily recovered from the turbulent potentials.
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Figure 1: Spanwise driven channel flow at Re=180. Turbulent potential model (lines)
compared with the DNS data of Moin at non-dimensional times 0.0. 0.3. 0.6. 0.9.

Another test of the turbulent potential model is the flow over an infinite swept bump (Webster et. al,
1996). In this flow the boundary layer height is the same order of magnitude as the bump so the
boundary layer is highly distorted and non-equilibrium in nature as it is subjected to both streamwise
pressure gradients and changes in curvature as in goes over the swept bump. Wu & Squires(1998)
have modeled this flow using LES and the elliptic relaxation model (Durbin, 1995). An unstructured
grid with high near wall resolution was used to calculate the potential model predictions for this flow.
An inlet condition of a fully developed zero pressure gradient two-dimensional boundary layer at
Re, =1400 is used as the upstream condition and was introduced at a half bump chord length upstream

of the leading edge of the bump. A slip boundary condition is applied at the top wall. The streamwise
velocity profiles are shown as function of the distance from the channel floor in Figure 2a. The results
are shown at various positions downstream of leading edge of the bump. The model predictions are the
symbols and the experimental results are the lines. The streamwise component of velocity increases
and reaches a maximum value at the apex of the bump. At trailing edge, the flow is very close to
separation because of the adverse pressure gradient caused by the flow expansion. The flow relaxes to
a two-dimensional boundary layer as it moves downstream of the bump and is close to inlet velocity
profile.
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Figure 2: Mean flow predictions of flow over a swept bump at Re, = /400 . (a) Streamwise velocity

T

(b) Spanwise velocity. Symbols are model predictions and lines are the experimental data.



The spanwise velocity profiles are shown in Figure 2b. The spanwise component of the velocity is
negative on top of the bump and reaches a maximum positive value at the end of the bump. This
change in sign of the spanwise velocity is because the spanwise pressure gradient switches sign once it
reaches the top of the bump. Downstream of the bump the model seems to recover a little too quickly
compared to the experiment. The model was also tested for an inlet boundary layer of Re, = 3260, and

mesh resolution studies were performed. Additional details of these calculations and the predictions of
the three-dimensional boundary layers formed on a prolate spheroid at an angle of attack can be found
in Are, Zhang & Perot (2002).

UNSTEADY VORTEX SHEDDING

To test this model’s ability to predict unsteady non-equilibrium turbulent flow and large-scale
unsteadiness, the problem of vortex shedding behind a 2D triangular cylinder was chosen. This flow is
inherently unsteady. This geometry is slightly easier to simulate than the circular cylinder, since the
separation points are fixed. The computational domain consisting of approximately 25,000 adaptively
located triangles was used in this simulation (Zhang & Perot, 2000). The inlet mean streamwise
velocity is set to a constant and the vertical velocity is set to zero. For turbulent kinetic energy and
dissipation rate, we use the same boundary conditions as described in Johnasson et al. (1993).

, _0.16k;, "

U;,,=17.0 m/s; k;,=(0.05U;,)"; &= 0.2/

where ¢ 1is the height of the duct (which is 3 times of the height of the triangle). The total mass flow
was m;=0.6 kgs™ in their experiment, and the inlet velocity is evaluated based on that value. A zero
gradient boundary condition is used for all the variables at the outlet. Slip-wall boundary conditions
are used for the duct wall. The Reynolds number of this simulation is Re=U;,d/v=45,000, where d is

the height of the triangle.

It was observed that an almost perfect periodicity existed when the stream function of a point about
one triangle height behind the triangle near the centerline was studied. The shedding frequency is
109.3 (s). The corresponding Strouhal number defined by Sr=fd/U, 1s 0.257, which should be

compared with experimental value of 0.25 (Sjunnesson et al. 1991) and the computed value of 0.27 in
Johnnasson et al. (1993). Although the instantaneous flow is asymmetric, the time-averaged fields are
always symmetric or anti-symmetric. Figure 3 shows the mean streamwise velocity at the centerline.
The length of recirculation zone is accurately predicted, while the location of the maximum negative
velocity is slightly upstream compared with the experiments. The magnitude of the maximum
negative velocity is also a little lower than the experiment data.
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Figure 3: Time averaged streamwise velocity on the centerline behind the triangular cylinder.



Figure 4 shows the streamwise velocity at different cross sections behind the triangle. The calculated
velocity profiles are in reasonable agreement with the experimental data. It is hypothesized that due to
mesh size restrictions the shear layer leaving the triangle is not fully resolved. The computed shear
layer is thicker than the real one, thus close to the back of the triangle, the fluid is slowed down and
driven backwards more than it should be.
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Figure 4: Time averaged stream-wise velocity behind the triangle: [I, calculations; *, experiments.
(a) 15mm, (b) 38mm, (c) 150mm, (d) 376mm.

ROTATING FLOWS

Rotation redistributes energy but does not create or destroy it. The k equation is therefore insensitive
to rotation, and consequently two-equation models have considerable difficulty capturing the effects of
rotation. Even the non-linear k-& models, such as the model developed by Speziale (1987), only have a
weak dependence on rotation rate. Reynolds stress transport equation closures do a much better job of
responding to rotation because the exact equations for the Reynolds stresses involve Coriolis terms.
Frame indifference was enabled by Speziale (1989) in Reynolds stress closures by ensuring that the
Reynolds stresses depend on the rotation rate solely through a quantity called the intrinsic vorticity.

Like Reynolds stress transport equation closures, the turbulent potential model has explicit Coriolis
terms due to rotation. However, unlike the stress transport closures these Coriolis terms must be
modeled (since they contain unknown Reynolds stresses) and are therefore only exact in certain limits.
The turbulent potential model uses the intrinsic vorticity to guarantee frame indifference, and a
detailed analysis of the frame invariance of the turbulent potentials and frame consistency of the model
has been performed by Bhattacharya (2002).

Rotating channel flow is a good test case for estimating the Coriolis term. The model has been
compared to the DNS results of Kristoffersen & Andersson (1993). The DNS has a turbulent Reynolds
number Re, =uh/vof 194 where h is the channel half width and u, =/vdv/dy _ is the shear
velocity. The pressure gradient is equal to 1. The Rossby number Ro for this case is defined as
2h|Q|/ u_. From Figure 5(a) we can see that even for zero rotation, the mean velocity is a little over
predicted (by about 5%), and the reason for this is known to be due to the low Reynolds number.
Reynolds numbers of 395 and 590 give very good agreement with the mean flow and the low order
turbulent statistics when the flow is not rotating. This small overshoot is present in both Figure 5(b)

and Figure 5(c) where the Rossby numbers are 0.15 and 0.5 respectively. The model gets the slope of
the mean velocity right, as well as the slope at the wall.
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Figure 5: Mean velocity profile for Re; = 194. (a) Ro =0.0 (b) Ro=0.15 (¢) Ro=10.5.
Symbols are DNS data and lines are the model predictions.
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In the case of swirling pipe flow the rotation is along an axis aligned with the mean flow rather than
perpendicular to it as in the rotating channel flow. The model has been compared to the experiments
of Imao & Itoh (1996). The calculations have been done with respect to a non-rotating frame, so that
Coriolis terms are not present in the calculations. The radius of the pipe is R. and the turbulent

Reynolds number ucR/v for this case is 572. The rotation rate is defined as N = Ve|wa“ IV,|,...» and the
two rotation rates tried out are 0, and 1.0. The non-dimensional pressure gradients applied for the two
cases are 1.0 and 0.6 respectively. Figures 6a and 6b show the angular and axial velocity profiles for

the two rotation rates, N=0 & N =1.0. The predictions for the angular velocity are very accurate, while
the axial velocity seems to be slightly underpredicted in the low rotation number case.
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Figure 6: Axial and angular velocity profiles for N=0 & N =1,
compared to experiments of Imao & Itoh (1996).

PREDICTING TRANSITION IN BOUNDARY LAYERS

Laminar to turbulent transition is a critical feature of many flows. The transition location can have a
profound affect on macroscopic variables such as total drag or heat transfer. Correlations for transition
are often difficult to implement and rarely apply to complex flow situations. In Wang & Perot (2002)
is argued that well formulated non-equilibrium turbulence models should also be able to model the
behavior of small amplitude disturbances and hence predict transition. Speziale et al. (1995) proposes
a similar argument. Transition, is a highly non-equilibrium process where the turbulence grows
exponentially within a quasi-steady mean flow and is therefore a stringent test of the turbulent
potential model.

1



The model predicts flat plate boundary layer transition with free stream turbulence intensities ranging
from 6% to 0.03% (natural transition). The present study also shows the ability of the model to predict
the effect of noise levels on natural transition and the effect pressure gradient, both strong & adverse,
on transition.

The process of transition is studied by looking at the evolution of the friction coefficient on a flat plate
boundary layer as a function of the downstream distance. The model predictions are compared to
experimental data with different initial turbulence intensities. The mean velocity is initially uniform

flow for all cases and the initial values of velocity U,, turbulence Reynolds number Re, =k?/(ve),
turbulence intensity level 7, = (% k)‘/2 /Uw for five experimental cases with four different turbulence
intensities are given in Table 1. The initial potentials ¢ and y are set to 2/3*k and zero respectively.
All experiments were performed in air so v =1.55x107° was used in every case.

TABLE 1
INITIAL FLOW PARAMETERS FOR THE TEST CASES IN FIGURE 7

U, (m/s) Re, Tu Source
24.4 100 0.03% Schubauer & Klebanoff
22 250 1.25% Abu -Ghannam & Shaw
14.42 250 1.3% Dhawan & Narasimha
5.4 200 3.0% ERCOFTAC, T3A
9.4 200 6.0% ERCOFTAC, T3B

The friction coefficients are plotted against Re_ , in Figure 7. The friction coefficients for laminar and
turbulence flows, i.e. C, =0.664Re."” and C, =0.027Re;"’ respectively, are also plotted for

comparison. The computations agree well with the experiments. The excessive overshoot at the end of
the transition may be a result of using the boundary layer approximation to compute the results. The
boundary layer approximation (small streamwise derivatives) is not well founded when the flow
transitions and the boundary layer grows very suddenly.
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Figure 7: Transition in zero pressure gradient boundary layer at various initial turbulence
intensities. The symbols represent experiment data and the lines are the model predictions.



The case of Tu =0.03% is remarkable in that it represents natural transition, a first for a RANS model.
The difference of the present result from experimental data of Schubauer et al. (1955) is actually
expected. Our result assumes a noisy initial condition (relatively large value for the scalar potential),
and is comparable to classical predictive theories such as e’ rule which predicts a value of 2.0x10°
(Warsi, 1999). Wang & Perot (2002) show that a smaller scalar potential (less noise) can delay the
transition location to 2.8x10° or even 5.0x10° which is the even lower noise value found by Wells
(1967).

The transition behavior of two variable pressure gradient boundary layers is shown in Figure 8. These
ERCOFTAC data sets (Coupland, 1990) have both favorable and adverse pressure gradients designed
to have some similarity to a turbine blade. It is seen that the model predicts the delayed transition
locations well.
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Figure 8: Transition in a variable pressure gradient boundary layer
at 3% and 6.6% initial turbulence intensities, ERCOFTAC T3C test cases.
CONCLUSIONS

This work has demonstrated the advantages of using a non-equilibrium turbulence model when
attempting to predict complex turbulent flow phenomena. =~ We have been able to accurately predict
three-dimensional boundary layers, unsteady flows, the effects of rotation, and boundary layer
transition with different pressure gradients, turbulence levels, and noise levels. In the past, true non-
equilibrium modeling required solving the coupled Reynolds stress transport equations. We
demonstrate in this work, a computationally simpler and faster approach. The turbulent potential is
fully non-equilibrium and makes no algebraic assumptions about how the turbulence is related to the
mean flow. However, it can be implemented and computed with a cost and complexity comparable to
popular two-equation models.
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