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A new approach to Reynolds averaged turbulence modeling is proposed which has

a computational cost comparable to two equation models but a predictive capability

approaching that of Reynolds stress transport models. This approach isolates the

crucial information contained within the Reynolds stress tensor, and solves trans-

port equations only for these \reduced" variables. In this work, DNS data is used

to analyze the nature of these newly proposed turbulence quantities and the source

terms which appear in their respective transport equations. The physical relevance

of these quantities is discussed and some initial modeling results for turbulent chan-

nel 
ow are presented.

1. Introduction

1.1 Background

Two equation turbulence models, such as the k=�model and its variants are widely

used for industrial computations of complex 
ows. The inadequacies of these mod-

els are well known, but they continue to retain favor because they are robust and

inexpensive to implement. The primary weakness of standard two equation models

is the Boussinesq eddy viscosity hypothesis. This constitutive relationship is rarely

applicable in complex 
ows. Algebraic Reynolds stress models (or non-linear eddy

viscosity models) assume a more complex (nonlinear) constitutive relation for the

Reynolds stresses. These models are often derived from truncated forms of the

full Reynolds stress transport equations. While they can signi�cantly improve the

model performance under some conditions, they also tend to be less robust and

usually require more iterations to converge (Speziale, 1994). Furthermore, the work

of Lund & Novikov suggests that even in their most general form, these models are

fundamentally incapable of completely representing the Reynolds stresses. Indus-

trial interest in using full second moment closures (the Reynolds stress transport

equations) is hampered by the fact that these equations are much more expensive

to compute, converge slowly, and are highly susceptible to instability.

In this work, a turbulence model is explored which does not require the assump-

tion of a constitutive relation for the Reynolds stresses but still is considerably

cheaper to compute than standard second moment closures. This alternative ap-

proach is made possible by abandoning the Reynolds stresses as the primary turbu-

lence quantity of interest. The Reynolds stresses appear only as a divergence in the
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averaged Navier-Stokes equations and therefore contain twice as much information

as the mean 
ow requires. Moving to a minimal set of turbulence variables reduces

the overall work by roughly half, but introduces a set of new turbulence variables,

which at this time are poorly understood. This project attempts to use DNS data

to better understand these new turbulence variables and their exact and modeled

transport equations.

1.2 Formulation

The averaged Navier-Stokes equations take the following form for incompressible,

constant-property, isothermal 
ow:

r � u = 0 (1a)

@u

@t

+ u � ru = �rp+r � �S�r �R (1b)

where u is the mean velocity, p is the mean pressure, � is the kinematic viscosity,

S = ru + (ru)

T

is twice the rate-of-strain tensor, and R is the Reynolds stress

tensor. The evolution of the Reynolds stress tensor is given by:

@R

@t

+ u � rR = r � �rR+P� ��

�

+��r �T� [rq+ (rq)] (2)

where P is the production term, ��

�

is the (homogeneous) dissipation rate tensor,

� is the pressure-strain tensor, T is the velocity triple-correlation, and q is the

velocity-pressure correlation. The last four source terms on the right-hand side

must be modeled in order to close the system. The production term P is exactly

representable in terms of the Reynolds stresses and the mean velocity gradients.

This is the standard description of the source terms, but it is by no means unique

and there are numerous other arrangements.

Note that turbulence e�ects in the mean momentum equation can be represented

by a body force f = r �R. One could construct transport equations for this body

force (which has been suggested by Wu et al., 1996) but mean momentum would

no longer be conserved. To guarantee momentum conservation, the body force

is decomposed using Helmholtz decomposition, into its solenodal and dilatational

parts, f = r�+r�  

 

. A constraint (or gauge) must be imposed on   

 

to make the

decomposition unique. In this work we take r �   

 

= 0. With this choice of gauge,

the relationship between � and   

 

and the Reynolds stress tensor is given by,

r

2

� = rcdot(r �R) (3a)

r

2

  

 

= �rtimes(r �R) (3b)

Note that the choice of gauge in
uences the value of   

 

, but not the e�ect that   

 

has on the mean 
ow.

Using these relationships, transport equations for � and   

 

can be derived from

the Reynolds stress transport equations.

@�

@t

+ u � r� = �r

2

�� 2r � q�r

�2

r � r � [��

�

���

�

+r �T�P+ S

�

] (4a)
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These equations contain extra production-like source terms S

�

and S

 

which contain

mean velocity gradients. Note that the production term is not an explicit function

of � and   

 

(except under limited circumstances) and, in general, must now be

modeled.

2. Theoretical Analysis

2.1 Turbulent Pressure

Taking the divergence of Eqn. 1a (the mean momentum equation) gives the classic

Poisson equation for pressure,

r

2

p = �r � (u � ru)�r � (r �R) (5)

Since this is a linear equation, the pressure can be conceptually split into two terms,

and one can think of the mean pressure as being a product of a mean 
ow pressure

due to the �rst term on the right-hand side,

r

2

P

mean

= �r � (u � ru) (6a)

and a turbulent pressure due to the second term on the right-hand side.

r

2

P

turb

= �r � (r �R) (6b)

Given the de�nition of � and assuming that � is zero when there is no turbulence

(which is the intuitive boundary condition) then it is clear that � = �P

turb

. For

this reason, � will be referred to as the turbulent pressure. This quantity is added

to the mean pressure in the averaged momentum equation, which results in P

mean

being the e�ective pressure for the averaged equations. The mean 
ow pressure.

P

mean

tends to vary more smoothly than p which aids the numerical solution of

these equations.

For turbulent 
ows with a single inhomogeneous direction the turbulent pressure

can be directly related to the Reynolds stresses. In this limit, Eqn. 3a becomes,

�

22

= R

22;22

where x

2

is the direction of inhomogeneity. This indicates that � = R

22

for these types of 
ows. Note that R

2

2 is positive semi-de�nite, so the turbulent

pressure is always greater than or equal to zero in this situation. Positive turbulent

pressure is consistent with the picture of turbulence as a collection of random vor-

tices (with lower pressure cores) embedded in the mean 
ow. It is not clear what

the conditions for a negative turbulent pressure would be, if this condition is indeed

possible.

2.2 Turbulent Vorticity

To understand the role of   

 

it is instructive to look again at turbulent 
ows that

have a single inhomogeneous direction. Under this restriction Eqn. 3b becomes

 

i;22

= ��

i2k

R

k2;22

where x

2

is the direction of inhomogeneity. If   

 

goes to zero
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when there is no turbulence (the intuitive boundary condition) then  

i

= ��

i2k

R

k2

,

or  

1

= �R

32

, psi

2

= 0 and  

3

= R

12

. These are the o� diagonal, or shear stress

components of the Reynolds stress tensor.

For two-dimensional mean 
ows (with two inhomogeneous 
ow directions), only

the third component of   

 

is non-zero and Eqn. 3b becomes

 

3;11

+  3; 22 = R

12;22

�R

12;11

+ (R

11

�R

22

)

12

(6)

Since   

 

is responsible for vorticity generation it is appropriate that it be aligned

with the vorticity in two dimensional 
ows. As a �rst level of approximation, it is

not unreasonable to think of   

 

as representing the average vorticity of a collection

of random vortices making up the turbulence, and it is reasonable to consider   

 

as

the turbulent vorticity.

2.3 Relationship with the Eddy Viscosity Hypothesis

Despite the shortcomings of the linear (Boussinesq) eddy viscosity hypothesis, it

is clearly a good �rst approximation of turbulence e�ects. The linear eddy viscosity

hypothesis for incompressible 
ows takes the form,

R = ��

T

(ru+ (ru)

T

) +

2

3

kI (7)

where �

T

is the eddy viscosity, I is the identity matrix, and k is one half the trace

of the Reynolds stress tensor.

Taking the divergence of Eqn. 7 and rearranging terms gives,

f = �r �R = r(�

2

3

k + 2u � r�

T

)�r� (�

T

r� u)� 2u � r(r�

T

): (8)

If the eddy viscosity varies relatively slowly, as is usually the case, then the very last

term (involving the second derivative of the eddy viscosity) will be small and can be

neglected. Under these circumstances the linear eddy viscosity model is equivalent

to the following model,

� =

2

3

k � 2u � r�

T

(9a)

  

 

= �

T

r� u: (9b)

So to a �rst approximation the turbulent vorticity,   

 

should be roughly equal to

the resolved vorticity, times a positive eddy viscosity; and the turbulent pressure

should be roughly equal to (2=3) of the turbulent kinetic energy. These results are

entirely consistent with the �ndings of the previous subsections.

3. Computational Results

Equations 3a and 3b, relating the turbulent pressure and turbulent vorticity to the

Reynolds stresses, were used to calculate � and   

 

from DNS data for two relatively

complex two-dimensional turbulent 
ows: a separating boundary layer (Na & Moin)

and 
ow over a backward facing step (Le & Moin). The purpose was to assess the

behavior of these new turbulence quantities in practical turbulent situations, and to

provide a database of these quantities for later comparison with turbulence models.
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Figure 1. Contours of turbulent pressure (�) and turbulent vorticity (�  

 

) for

the separating boundary layer of Na & Moin.

3.1 Separated Boundary Layer

The values of � and � 

3

are shown in Figure 1. As mentioned previously, for

two dimensional 
ows only the third component of   

 

is nonzero. The 
ow moves

from left to right, separates just before the midpoint of the computational domain,

and then reattaches before the exit. The contours are the same for both quantities

and range from �:004U

2

1

to :01U

2

1

, where U

1

is the inlet free-stream velocity.

Both the turbulent pressure and turbulent vorticity magnitude increase in the

separating shear layer and the reattachment zone. In addition, both quantities

become slightly negative in the region just in front (to the left) of the separating

shear layer, and show some \elliptic" (long range decay) e�ects at the top of the

separation bubble. There is some speculation, at this time, that these e�ects could

be numerical, but there is also some reason to believe that they are a legitimate

result of the elliptic (but order one) operators which de�ne these variables. Changes

in the far-�eld boundary condition had little e�ect on the computed values of � and

 

3

.

The visual observation that � and � 

3

are roughly proportional, is analogous to

the observation that 0:3k � R

12

(originally developed by Townsend, 1956, and suc-

cessfully used in the turbulence model of Bradshaw & Ferriss). It is also consistent

with the (�rst order) notion of turbulence as a collection of embedded vortices, with

�� representing the average vortex core pressure and   

 

representing the average

vortex strength.

In the case of a single inhomogeneous direction �� = R

22

and  

3

= �R

12

. It

is instructive therefore to compare the results shown in Figure 1 with the R

22

and
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Figure 2. Contours of the normal Reynolds stress (R

22

) and negative turbulent

shear stress (�R

12

) for the separating boundary layer of Na & Moin.

�R

12

components of the Reynolds stress tensor, shown in Figure 2. The magnitudes

of the contours in Figure 2. are the same as Figure 1. This comparison clearly shows

the additional e�ects that result from inhomogeneity in the streamwise direction.

The leading and trailing boundary layers (which have very little streamwise inho-

mogeneity) are almost identical. However, the magnitudes of the turbulent pressure

and turbulent vorticity component are enhanced in the separated shear layer due

to the streamwise inhomogeneity.

3.2 Backward Facing Step

Computations of � and � 

3

for the backward facing step are shown in Figure 3.

The 
ow is from left to right, and there is an initial (unphysical) transient at the

in
ow as the in
ow boundary condition becomes Navier-Stokes turbulence. The

boundary layer leading up to the backstep has moderate levels of the turbulent

pressure and turbulent vorticity (which closely agree with the values of R

22

and

�R

12

in that region. As with the separating boundary layer, the turbulent pres-

sure and turbulent vorticity increase signi�cantly in the separated shear layer and

reattachment zone. There is an area of slight positive turbulent pressure and nega-

tive turbulent vorticity in the far �eld (about one step height) above the backstep

corner. This may or may not be a numerical artifact, and is discussed in the next

section.

3.3 Ellipticity

Identifying the exact nature of the ellipticity of these new turbulence quantities is

important to understanding their overall behavior, and how they should be modeled.
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Figure 3. Contours of turbulent pressure (��) and turbulent vorticity (  

 

) for

the backward facing step of Le & Moin.

Rewritten, equations 3a and 3b become,

� = r

�2

rcdot(r �R) (9a)

  

 

= �r

�2

rtimes(r �R) (9b)

These are elliptic, but order one, operators on the Reynolds stress tensor. As

demonstrated in section 3, when there is only a single inhomogeneous direction,

these operators simply select various Reynolds stress components. Under these

conditions they do not produce "action at a distance" or long range e�ects normally

associated with elliptic (Poission or Helmholtz) operators.

For two and three inhomogeneous directions, it is still not clear whether these

operators produce long range e�ects. There are certainly some situations in which

they do not. One example is if the Reynolds stress tensor can be represented

in the following form (somewhat reminiscent of the linear eddy viscosity relation)

R

ij

= s�

ij

+ v

i;j

+ v

j;i

, where s is some scalar and v is a vector. If this is the case

then, � = s + 2r � v and   

 

= �r � v, and there are no long range (\elliptic")

e�ects.

In fact, the presence of long range e�ects in � and   

 

is somewhat unsettling.

It would suggest that these turbulence quantities can exist in regions where there

is no Reynolds stress. Since r � R = r� + r �   

 

, this would imply that some

sort of complex cancellation of these long range e�ects must take place when the

Reynolds stresses (turbulence) are small or negligible. While the results presented

in Figure 1 and 3 can be explained by assuming that elliptic e�ects must take place,

they could also be a numerical artifact. The numerical solution of equations 9a and
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B
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ard Facing Step (x/h =
 4.0)

0.0
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1.5

2.0
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-0.0050

-0.0025

0.0000

0.0025

0.0050

phi budget

Figure 4. Budget of the � transport equation at a station roughly half way

through the recirculation bubble of the backward facing step. , dissipation or

di�usion; , velocity pressure-gradient; , triple correlation term; ,

production or convection.

9b requires double di�erentiation of numerical data, and results in highly compact

Poission equation source terms which are only marginally resolved by the mesh.

It is our current conjecture that these operators are actually local in nature

and only serve to \mix" various components of the Reynolds stress tensor. It is

also conjectured from these computational results that the turbulent pressure is a

positive semi-de�nite quantity.

3.4 Turbulent Pressure Evolution

Considerable intuition can be obtained about the evolution of the turbulent pres-

sure by considering the case of a single inhomogeneous direction. It has been shown

that under these circumstances � = R

22

, so the evolution is identical with the

Reynolds stress transport equation for the normal Reynolds stress, R

22

. For the

case of turbulent channel 
ow (Mansour et al.), the R

22

evolution is dominated by

a balance between dissipation and pressure-strain, with somewhat smaller contribu-

tions from turbulent transport and viscous di�usion. There is considerable interest

in determining if these same trends continue for � evolution in more complex situ-

ations, since the ultimate goal is to construct a modeled evolution equation for this

quantity.

Figure 4. shows the terms in the exact � evolution equation for 
ow over a back-

ward facing step, at a station roughly in the middle of the recirculation bubble.

These terms were reconstructed in the same manner as the turbulent pressure was

calculated. Both the detached shear layer and the backwards moving boundary
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Figure 5. Budget of the  

3

transport equation at a station roughly half way

through the recirculation bubble of the backward facing step. See Figure 4 for

caption.

layer are visible in the statistics. In the shear layer, the expected dominance of dis-

sipation and pressure-terms (presumably dominated by pressure-strain) is present.

In the recirculating boundary layer, turbulent transport and pressure-terms (prob-

ably dominated by pressure transport) are dominant. It is interesting to note that

the production term dominates in the middle of the recirculation bubble. The fact

that these source terms do not approach zero at roughly two step heights away from

the bottom wall, is thought to be a numerical artifact similar to those found when

calculating � and   

 

. Some of the curves have an erratic nature due to the lack of

statistical samples. This phenomena is also present in the (unsmoothed) Reynolds

stress transport equation budgets presented in Le & Moin.

3.5 Turbulent Vorticity Evolution

As with the turbulent pressure, it is useful to consider the case of a single inhomo-

geneous direction, when analyzing the evolution of the turbulent vorticity. Under

these circumstances  

3

evolves identically to the Reynolds shear stress, R

12

. In

turbulent channel 
ow, the R

12

evolution is dominated by a balance between pro-

duction and pressure-strain, with somewhat smaller contributions from turbulent

and pressure transport. This trend continues in the  

3

evolution equation, which is

shown in Figure 5., for the backward facing step at a cross section roughly halfway

through the recirculization bubble. The small value of the dissipation is consis-

tent with the fact that isotropic source terms can be shown not contribute to the

evolution of   

 

.
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4. Modeling

4.1 Formulation

The proposed transport equations for the turbulent pressure and turbulent vor-

ticity are,

@�

@t

+ u � r� = �r � (� + �

T

)r�� (

3

2

C

�

)(

1

T

)�� (

12�

y

2

)�+ (

2

3

)

  

 

�   

 

15� + �

T

(10a)

@  

 

@t

+ u � r  

 

= �r � (� + �

T

)r  

 

� (

1

T

)  

 

� (

6�

y

2

)  

 

+ �!!

!

(10b)

where C

�

= 0:09, y is the normal distance to the wall, the inverse timescale is given

by

1

T

=

�

�+�

T

, and the eddy viscosity is given by �

T

=

j  

 

j

j!j

. Dissipation (and some

redistribution) is modeled as an exponential decay process (roughly corresponding

to the Rotta, low Reynolds number dissipation model). Turbulent and pressure

transport are collectively modeled as enhanced di�usive transport. Production and

energy redistribution are proportional to the turbulence scale times the mean vor-

ticity for the turbulent vorticity, and are proportional to the square of the turbulent

vorticity magnitude for the turbulent pressure. High Reynolds number constants

are determined so that � =

2

3

k at high Reynolds numbers. Low Reynolds num-

ber constants (which appear with a �) are set to obtain good agreement with the

channel 
ow simulations of the next section.

Note that both � and   

 

have the same units. An extra turbulent scale is currently

de�ned by using the mean 
ow timescale j!j to de�ne the eddy viscosity. The

solution of an additional scale transport equation (such as �) would remedy a number

of potential problems with the current model. It could eliminate the singularity in

the eddy viscosity at zero vorticity, remove any explicit references to the wall normal

distance, and allow better decay rates for homogeneous isotropic turbulence. The

disadvantage of this approach (which will be tested in the future) is the added

computational cost and additional empiricism.

4.2 Channel Flow Simulations

The model equations (10a and 10b) were solved in conjunction with mean 
ow

equations for fully developed channel 
ow at Re

�

of 180 and 395. Since there is only

one inhomogeneous direction, the turbulent pressure is proportional to the normal

Reynolds stress, and  

3

is proportional to the turbulent shear stress. Comparisons

of the model predictions and the DNS data of Kim, Moin, & Moser, are shown in

Figure 6. Given the initial state of the model, the predictions are surprisingly good.

When a turbulent channel 
ow is suddenly perturbed by a spanwise pressure gra-

dient, the 
ow suddenly becomes three dimensional and the turbulence intensities

�rst drop, before increasing due to the increased total shear (Moin et al.). Durbin

modeled this e�ect by adding a term to the dissipation equation which increases

the dissipation in these three-dimensional 
ows. The same qualitative e�ect can

be obtained by de�ning the eddy viscosity in the proposed model as �

T

=

  

 

�!

!cdot!

.
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0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

1.5
Mean Velocity (10e-1)

Normal Reynolds Stress (R22)

Turbulent Shear Stress (R12)

Turbulent Channel Flow (Re=180)

symbols = DNS data (Kim & Moin)

solid line = three equation model

Figure 6. Model results (solid lines) and DNS data (circles) for turbulent channel


ow. (Re

�

= 180)

In two dimensional 
ows this is identical to the previous de�nition. However, in

three dimensional 
ows, the orientation of   

 

will lag �!, and the eddy viscosity will

drop initially. A smaller eddy viscosity leads to a smaller timescale and increased

dissipation. Unfortunately, the magnitude of this e�ect is severely underestimated,

and a scale equation (and a correction like Durbin's) may be required to model this

e�ect accurately.

5. Conclusions

This work proposes abandoning the Reynolds stresses as primary turbulence

quantities, in favor of a reduced set of turbulence variables, namely the turbu-

lent pressure, �, and the turbulent vorticity   

 

. The advantage of moving to these

alternative variables is the ability to simulate turbulent 
ows with the accuracy of a

Reynolds stress transport model (i.e. with no assumed constitutive relations), but

at a signi�cantly reduced cost and simpli�ed model complexity. As the names im-

ply, these quantities are not simply mathematical constructs formulated to replace

the Reynolds stress tensor. They are physically relevant quantities. Not only has a

new modeling framework been proposed, but in the process we have uncovered an

alternative method for qualitatively describing turbulent 
ows.

At �rst glance the operators which relate � and   

 

to the Reynolds stress tensor

suggest the possibility of ellipticity or action at a distance. However, we have

shown that under a number of di�erent circumstances this does not happen, and

conjecture that it may never happen. The physical relevance of these quantities

would be complicated if they were �nite when there was no turbulence (Reynolds
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stresses). A proof to this e�ect may also prove our second conjecture, that � is a

positive de�nite quantity.

The budgets for the transport equations of these new variables indicated that

the extra production terms were not signi�cant, and that these equations could be

modeled analogously to the Reynolds stress transport equations. An initial model

was constructed for these equations using very basic modeling constructs which

showed good results for turbulent channel 
ow. It is likely, that for this shearing


ow, the turbulent timescale is well represented by the mean 
ow vorticity. However,

for more complex situations, it is likely that an additional scale equation (such as

an � equation) will be required.
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