
Mechanical and Industrial Engineering

UMassAmherst

Blair Perot

Mike Martell

Chris Zusi

Department of Mechanical and Industrial Engineering

Implementation of the Oriented-
Eddy Collision Turbulence

Model in OpenFoam

Theoretical & Computational Fluid Dynamics Laboratory

First Dutch OpenFOAM Day
 Nov 4th, 2010

2

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Goal: Develop a New Turbulence Model

Navy Requirements

 Easy for others to test.

 Easy for others to adopt.

 Easy to test real world applications.

Our Requirements

 Solve coupled tensor PDE’s.

 Mixed BCs.

 Handle arbitrary numbers of equations.

3

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

 Advantages over commercial code

• Free, open source, parallel

• Users can inspect, alter, expand on the source
code.

 Advantages over in house code development

• Many numerical methods, operators, utilities
already implemented and tested

 Large, user-driven support community

• Interact with other OpenFOAM users.

• Get help from CFD experts.

Why OpenFoam?

4

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

 Advantages over commercial code

• Free, open source, parallel

• Users can inspect, alter, expand on the source
code.

 Advantages over in house code development

• Many numerical methods, operators, utilities
already implemented and tested

 Large, user-driven support community

• Interact with other OpenFOAM users.

• Get help from CFD experts.

Why OpenFoam?

5

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

 Advantages over commercial code

• Free, open source, parallel

• Users can inspect, alter, expand on the source
code.

 Advantages over in house code development

• Many numerical methods, operators, utilities
already implemented and tested

 Large, user-driven support community

• Interact with other OpenFOAM users.

• Get help from CFD experts.

Why OpenFoam?

6

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Prior Experience:

In House Codes

 UNS3D: Moving unstructured staggered
mesh code for two-phase incompressible flows

 Stag++: Cartesian staggered mesh for
DNS/LES of incompressible turbulence.

Fluent

 User defined subroutines for RANS modeling.

OpenFoam

 Wind turbine blade simulation. Rotating
imbedded mesh.

7

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Wind Turbine Calculations with OpenFoam

Spin indicator
= second invariant of the strain tensor

 Runs on 8-16 CPUs
 No major issues

8

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Eddy Collision Model Overview

Pouring Spherical
objects results in

RANS eqns.

Assumption:
Turbulent Flow = Flow of a Colloidal
suspension of disk-like spinning objects.

Pouring a concentrated
Disk suspension results

in OEC model

9

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Review of OEC Model Properties

 Cost roughly
about 10x k/e.

 Four model
constants.

 Realizable,
Material Frame
Indifferent,
Galilean
Invariant, Exact
in linear limit, etc.

Log(Cost)

Log(Physics)

1 0.1

1

100

10

10 100

0.1

 LES

RANS

OEC

10

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

PDE Formulation

• Global Variables (sum many eddies – 20-50)

1
ij ijN

R R  2 21
2

/T ii iiR R q   

2

, , ,

1 1 1() ()
3 3

i
k k i i i i t i k ik

R

Dq
q u q q A B q W

Dt
  


 

            
 

     

* * 2

, , , ,2 2

, ,

, ,,
,

12 2

() ()
()

ij j li l
i k il l k kj j k jl l k ki ij

R

ij k k

ij ij t ij k t k t ij ijk
k

DR q qq q
u u R u u R q R

q qDt

R K K
A M R D K E R W

K KK

  


     

       
              

       

 
           

 

Eddy
Velocity
Fluctuation
(tensor)

Eddy Size and
Orientation (vector)

11

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Open Foam Formulation

Implicit terms on the left-hand side.

Explicit terms on the right-hand side.

2

, , ,

1 1 1() ()
3 3

i
k k i i i i t i k ik

R

Dq
q u q q A B q W

Dt
  


 

            
 

 fvm::ddt(qiINT)

 - (1.0/3.0)*fvm::laplacian(dEff(), qiINT)

 + (1.0/3.0)*fvm::SuSp(((alpha*nu()*qsq + tauR)), qiINT)

 ==

 - fvc::div(phi_, qiINT)

 - (qiINT & fvc::grad(U))

 - (Ai + Bi)

12

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

First Challenge: Multiple Eddies

 The Number of Eddies for
each physical location is
arbitrary.

 10 is minimal necessary.

 100 is usually very good.

998

37
1

236

108
49

9
256

16

2102
55

998998

3737
11

232366

108108
4949

99
256256

1616

22102102
5555

Rij_[eddy][cell].xx()

Pointer list with
an entry for
every eddy

Location in
mesh

Component
(11 in this

case)

Pointer lists
are employed
to keep track
of eddies

13

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Multiple Eddies: OpenFoam Solution

forAll(initOrientations_,i) {
 ...
 solveqR(i, qi_[i], ...);
 ...
 }

void OEC::solveqR(int i, volVectorField qiINT, ...) {
 ...
 tmp<fvVectorMatrix> qEqn
 (
 fvm::ddt(qiINT) = ...
);
 ...
 solve(qEqn, mesh_.solver("q"));
 ...
}

This system allows us to write
generalized functions which handle
any number of eddy vectors.

The model can be implemented on
a per-eddy basis.

Averaging all of the entities in a
given pointer list is also easy, which
is good because all we really care
about is the average R, K, etc.

14

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Second Challenge: Tensors

 No gradient of a rank 2 (and higher) tensor

  ,

,

()
ij

t k

k

R
D K

K
 

 
   

 

…
fvc::grad(R)

…

Solution:

Break it

into vectors

forAll (mesh_.C(), cell) // internal cells

 {

 Rx[cell].x() = Rtmp[cell].xx();

 Rx[cell].y() = Rtmp[cell].xy();

 Rx[cell].z() = Rtmp[cell].xz();

 ...
 gradKgradR[cell].xx() = (gradK[cell].x()*gradRx[cell].xx()

 + gradK[cell].y()*gradRx[cell].xy()

 + gradK[cell].z()*gradRx[cell].xz());

 gradKgradR[cell].yy() = (gradK[cell].x()*gradRy[cell].yx()

 + gradK[cell].y()*gradRy[cell].yy()

 + gradK[cell].z()*gradRy[cell].yz());

 gradKgradR[cell].zz() = (gradK[cell].x()*gradRz[cell].zx()

 + gradK[cell].y()*gradRz[cell].zy()

 + gradK[cell].z()*gradRz[cell].zz());

15

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Third Challenge: Boundary Conditions

 On wall, the boundary

conditions are mixed.

This is for an xz-wall.

We currently can not do

walls that are not

aligned with the tensor

coordinate directions.

Y

wall

1

23 6
108

49

Y

wall

1

23 6
108

49

1311
12

22 23

33

1

2

3

0 0

0 0

0

0

0

ij slip wall

i wall

RR
R

y y

R R R

R

y

q

q
q

y

q



 
   

 
   

 


 
   

 
 
  
 
 

 

16

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Last Challenge: Stable Time Marching

 Many source terms have no fvm:: (implicit)

implementation.

 Some explicit source terms can be unstable with

Explicit Euler time advancement.

Solution:

• Write a RK3 solver.

• Modify equations with explicit time derivative

• Use FOAM’s .storeOldTime() to save the old

time values.

17

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Last Challenge: Stable Time Marching

 Many source terms have no fvm:: (implicit)

implementation.

 Some explicit source terms can be unstable with

Explicit Euler time advancement.

Solution:

• Write a RK3 solver.

• Modify equations with explicit time derivative

• Use FOAM’s .storeOldTime() to save the old

time values.

18

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Last Observation:

 Gradient of a vector

1 2

1 1

1 2

2 2

1,1 2,1 11 12

,

1,2 2,2 21 22

a a

x x

i j i ja a

x x

a a g g
a a

a a g g

 

 

 

 

     
         
     

19

UMassAmherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laboratory

Summary:

 OEC is implemented in OpenFoam.

