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Goal: Develop a New Turbulence Model 

Navy Requirements 

 Easy for others to test. 

 Easy for others to adopt. 

 Easy to test real world applications. 

Our Requirements 

 Solve coupled tensor PDE’s. 

 Mixed BCs. 

 Handle arbitrary numbers of equations. 
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 Advantages over commercial code 

• Free, open source, parallel 

• Users can inspect, alter, expand on the source 
code. 

 Advantages over in house code development 

• Many numerical methods, operators, utilities 
already implemented and tested 

 Large, user-driven support community 

• Interact with other OpenFOAM users. 

• Get help from CFD experts. 

Why OpenFoam? 
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Prior Experience: 

In House Codes 

 UNS3D:  Moving unstructured staggered 
mesh code for two-phase incompressible flows 

 Stag++: Cartesian staggered mesh for 
DNS/LES of incompressible turbulence. 

Fluent 

 User defined subroutines for RANS modeling. 

OpenFoam 

 Wind turbine blade simulation. Rotating 
imbedded mesh. 
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Wind Turbine Calculations with OpenFoam 

Spin indicator  
= second invariant of the strain tensor  

 Runs on 8-16 CPUs 
 No major issues 
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Eddy Collision Model Overview  

Pouring Spherical 
objects results in 

RANS eqns. 

Assumption: 
Turbulent Flow = Flow of a Colloidal 
suspension of disk-like spinning objects.  

Pouring a concentrated 
Disk suspension results 

in OEC model 
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Review of OEC Model Properties 

 Cost roughly 
about 10x  k/e. 

 Four model 
constants. 

 Realizable, 
Material Frame 
Indifferent, 
Galilean 
Invariant, Exact 
in linear limit, etc.   

Log(Cost ) 

Log(Physics ) 
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PDE Formulation 

• Global Variables  (sum many eddies – 20-50) 
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Open Foam Formulation 

Implicit terms on the left-hand side. 

Explicit terms on the right-hand side. 
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 fvm::ddt(qiINT)  

 - (1.0/3.0)*fvm::laplacian(dEff(), qiINT) 

 + (1.0/3.0)*fvm::SuSp(((alpha*nu()*qsq + tauR)), qiINT) 

 == 

 - fvc::div(phi_, qiINT) 

 - ( qiINT & fvc::grad(U) ) 

 - ( Ai + Bi ) 
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First Challenge: Multiple Eddies 

 The Number of Eddies for 
each physical location is 
arbitrary. 

 10 is minimal necessary. 

 100 is usually very good. 
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Multiple Eddies:  OpenFoam Solution 

forAll(initOrientations_,i) { 
       ... 
       solveqR(i, qi_[i], ...); 
       ... 
 } 
  
void OEC::solveqR(int i, volVectorField qiINT, ...) { 
       ... 
       tmp<fvVectorMatrix> qEqn 
        ( 
         fvm::ddt(qiINT) = ... 
        ); 
        ... 
        solve(qEqn, mesh_.solver("q")); 
        ... 
} 

This system allows us to write 
generalized functions which handle 
any number of eddy vectors. 

The model can be implemented on 
a per-eddy basis.  

Averaging all of the entities in a 
given pointer list is also easy, which 
is good because all we really care 
about is the average R, K, etc.  
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Second Challenge: Tensors 

 No gradient of a rank 2 (and higher) tensor 
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fvc::grad(R) 

… 

Solution: 

Break it 

into vectors 

forAll (mesh_.C(), cell)       // internal cells 

 { 

      Rx[cell].x() = Rtmp[cell].xx(); 

      Rx[cell].y() = Rtmp[cell].xy(); 

      Rx[cell].z() = Rtmp[cell].xz(); 

    ... 
      gradKgradR[cell].xx() = ( gradK[cell].x()*gradRx[cell].xx() 

                              + gradK[cell].y()*gradRx[cell].xy() 

                              + gradK[cell].z()*gradRx[cell].xz() ); 

      gradKgradR[cell].yy() = ( gradK[cell].x()*gradRy[cell].yx() 

                              + gradK[cell].y()*gradRy[cell].yy() 

                              + gradK[cell].z()*gradRy[cell].yz() ); 

      gradKgradR[cell].zz() = ( gradK[cell].x()*gradRz[cell].zx() 

                              + gradK[cell].y()*gradRz[cell].zy() 

                              + gradK[cell].z()*gradRz[cell].zz() ); 
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Third Challenge: Boundary Conditions 

 On  wall, the boundary 

conditions are mixed. 

This is for an xz-wall. 

We currently can not do 

walls that are not 

aligned with the tensor 

coordinate directions. 
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Last Challenge: Stable Time Marching 

 Many source terms have no fvm:: (implicit) 

implementation. 

 Some explicit source terms can be unstable with 

Explicit Euler time advancement. 

Solution: 

• Write a RK3 solver. 

• Modify equations with explicit time derivative 

• Use FOAM’s .storeOldTime() to save the old 

time values. 
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Last Observation: 

 Gradient of a vector 
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Summary: 

 OEC is implemented in OpenFoam. 

 

 


