@NO Pr— First Dutch OpenFOAM Day

Nov 4th, 2010

Implementation of the Oriented-
Eddy Collision Turbulence
Model in OpenFoam

Blair Perot
Mike Martell
Chris Zusi

Department of Mechanical and Industrial Engineering

UMassAmbherst

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst

Goal: Develop a New Turbulence Model

Navy Requirements

= Easy for others to test. Open\VFOAM
= Fasy for others to adopt.

= Fasy to test real world applications.

Our Requirements

= Solve coupled tensor PDE’s.

= Mixed BCs.

= Handle arbitrary numbers of equations.

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst

Why OpenFoam?

= Advantages over commercial code
- Free, open source, parallel

- Users can inspect, alter, expand on the source
code.

= Advantages over in house code development

« Many numerical methods, operators, utilities
already implemented and tested

= Large, user-driven support community

« Interact with other OpenFOAM users. =
- Get help from CFD experts. |

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst
Why OpenFoam?

tmp<fvScalarMatrix> kEgn
(
fvm: iddt(KINT)
vm: :lanlacian(dFff()

= Advant tmp<fvScalarMatrix> KEgn

coddt(KINT)
 Users . laplacian(dEff(), KINT)
code. s SuSp((alpha*nu()*gsqg + tauR), KINT)
= Advant idiv(phi_, KINT)
+ (Ptmp && (R1jStarINT*KkINT))
- Many S R
alreacd + M
= Large,
« Interact with other OpenFOAM users.
. Get help from CFD experts. _:T""“%i?ffff?
Mechanical and Industrial Engineering 4

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst

Why OpenFoam?

= Advantages over commercial code
 Free, open source, parallel

° User(\ ~AmA T A~A A ~F -~ A AvsrAammnA Al FlaA ~ALIEA~AA

code | &

= Advani | threads in Forum : OpenFOAM
« Many |

Thread / Thread Starter
alrea —
E sHM and cyclicGgi
n Large’ — FabOr
e Inter | = | Simple hardcoding boundary conditions
_— Noggin
« Getl

E How to modify discrete scheme
— crammerD0s

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst

Prior Experience:

In House Codes

= UNS3D: Moving unstructured staggered
mesh code for two-phase incompressible flows

= Stag++: Cartesian staggered mesh for
DNS/LES of incompressible turbulence.

Fluent

= User defined subroutines for RANS modeling.

OpenFoam

= Wind turbine blade simulation. Rotating
imbedded mesh.

Mechanical and Industrial Engineering 6

Theoretical & Computational Fluid Dynamics Laborator



UMassAmbherst

Wind Turbine Calculations with OpenFoam

Spin indicator
= second invariant of the strain tensor

= Runs on 8-16 CPUs
* No major issues

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst

Eddy Collision Model Overview

Assumption:
Turbulent Flow = Flow of a Colloidal
suspension of disk-like spinning objects.

Pouring Spherical Pouring a concentrated
objects results in Disk suspension results
RANS eqns. in OEC model

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst

Review of OEC Model Properties

= Cost roughly LES
about 10x k/e. Log(Cost) ’
= Four model . |
nstants. -
= Realizable, 10 - ‘
Material Frame
Indifferent, 1 - NS
Galilean
Invariant, Exact o1 L .
in linear limit, etc. | S 0
Log(Physics)
Mechanical and Industrial Engineering 9

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst

PDE Formulation

Dg; 1 1 1 Eddy Size and
Dt =—0O, Uy —§(avq T ) g — (A +Bi)+§|:(v+vt)qi'k:|,k Wi | Orientation (vector)

R

DR. | . _
il g, +| 3% s Lo, (R, +| T, +| S s, 2w Ry —| ave? + L R, Eddy
I, 2 ; J N 2 ]
Dt g g i Velocity

Fluctuation
A+ M, +[ v+, R.Jk] D(v+vt)[ } (K),—E(v+ t)(KK)’k (fg"‘ R, +W; | (tensor)

 Global Variables (sum many eddies — 20-50)

ﬁij:ﬁzRij \/Zz R. /Z:R"q2

Mechanical and Industrial Engineering 10

Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst

Open Foam Formulation

Dq,

_ a1 2.1 1
Dt = —O Uy —§((qu +qui —(A+ Bi)+§[(V+Vt)Qi,k },k +W,

fvm: :ddt (giINT)
- (1.0/3.0)*fvm: :laplacian(dEff (), giINT)
+ (1.0/3.0)*fvm: :SuSp(((alpha*nu() *gsq + tauR)), giINT)

- fvec::div(phi_, giINT)
- ( giINT & fvc::grad(U) )
- (Ai + Bi )

Implicit terms on the left-hand side.
Explicit terms on the right-hand side.

Mechanical and Industrial Engineering 11

Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst 9ECFOAM

First Challenge: Multiple Eddies

-

2
o
AR

Rij_ [EddY][Ce"] xx() —— Component

= The Number of Eddies for
each physical location is
arbitrary.

= 10 is minimal necessary.
= 100 is usually very good.

Y

Pointer lists

are employed — T (11 in this
Pointer list with Location in case)

to keeP track an entry for mesh

of eddies every eddy

Mechanical and Industrial Engineering 12

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst 9ECFOAM

Multiple Eddies: OpenFoam Solution

forAll(initOrientations_,i) { )

- This system allows us to write
solveqR(, qi_[1], -..); > generalized functions which handle
any number of eddy vectors.

} /

void OEC::solvegR(int i, volVectorField giINT, ...) {
tmp<fvVectorMatrix> gEqn \  [The model can be implemented on
( _ a per-eddy basis.

fvm:.ddt(qgilNT) = ... _ -

); > Averaging all of the entities in a
given pointer list is also easy, which
solve(qEqn, mesh_.solver("q")); ) is good because all we really care

} about is the average R, K, etc.

Mechanical and Industrial Engineering 13

Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst 9ECFOAM

Second Challenge: Tensors

= No gradient of a rank 2 (and higher) tensor

ij EER
-D(v+w) (K) fvc::grad(R)
K
,k (RN ]
forAll (mesh .C(), cell) // internal cells
{
2 n Rx[cell] .x() = Rtmp[cell].xx();
SOIUtIOn- Rx[cell] .y () = Rtmp[cell].xy();

Rx[cell] .z () Rtmp[cell] .xz () ;

Break it
Into vectors

gradKgradR[cell] .xx () = gradK[cell] .x () *gradRx[cell] .xx ()
gradK[cell] .y () *gradRx[cell] .xy ()
gradK[cell] .z () *gradRx[cell] .xz () ),
gradK[cell] .x () *gradRy[cell] .yx ()
gradK[cell] .y () *gradRy[cell] .yy ()
gradK[cell] .z () *gradRy[cell].yz () )
gradK[cell] .x () *gradRz[cell] .zx ()
gradK[cell] .y () *gradRz [cell] .zy()
gradK[cell] .z () *gradRz[cell] .zz () ),

gradKgradR[cell] .yy ()

gradKgradR[cell] .zz ()

Mechanical and Industrial Engineering 14

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst 9ECFOAM

Third Challenge: Boundary Conditions

= On wall, the boundary
conditions are mixed.

aRll aRlS
.. =0 Rp=
This is for an xz-wall. % - Ray_
We currently can not do R,
walls that are not L o |
aligned with the tensor 6 =0
. . . aqz
coordinate directions. Oy = oy 0
0=

Mechanical and Industrial Engineering 15

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst 9ECFOAM

Last Challenge: Stable Time Marching

= Many source terms have no fvm:: (implicit)
implementation.

= Some explicit source terms can be unstable with
Explicit Euler time advancement.

tmp<fvWectorMatrix> gEgn
(

fvm: :ddt(qgiINT)
- (1.0/3.0)*fvm: :laplacian(dEff(), qiINT)
+ (1.0/3.0)*fvm: :SuSp(((alpha*nu()*gsg + tauR)), qiINT)

- fvc::div(phi_, gqiINT)

- . - ( gIINT & GU_ )
SOI utlon | ; E ?g1;ME}N')F - qiINT) / mesh_.time().deltaT() ) // RK3 correction tern
o erte a RK3 SOIVer- solve n, mesh_.solver("q"));

- Modify equations with explicit time derivative

« Use FOAM’s .store0ldTime () to save the old
time values.

Mechanical and Industrial Engineering 16

Theoretical & Computational Fluid Dynamics Laborator




UMassAmbherst @®ECFOAM
Last Challenge: Stable Time Marching

\ /| - ~ -
tmp<fvVWectorMatrix> gEgn
(
fvm: :ddt(gi1INT)
- (1.0/3.0)*fvm: :laplacian(dEff(), qiINT)
+ (1.0/3.0)*fvm: :SuSp(((alpha*nu()*gsq + tauR)), qiINT)

- fvc::div(phi_, qiINT)

- ( gi1INT & GU_ )

T - e S 2

+ ( (gqiTMPINT - qQiINT) 7/ mesh_.time().deltal() ) // RK3 correction term
)

//

solve(gEqn, mesh_.solver("q"));

« Use FOAM’s .store0ldTime () to save the old
time values.

Mechanical and Industrial Engineering
Theoretical & Computational Fluid Dynamics Laborator




UMassAmherst 9ECFOAM

[.ast Observation:

= Gradient of a vector

Oy oa, B B
R d; Ay, O 9 B
A= e ca, 3 = 04,
_5X2 X, | _a1,2 2,2 g21 g22
18

Mechanical and Industrial Engineering

Theoretical & Computational Fluid Dynamics Laborator



UMassAmherst 9ECFOAM

Summary:

= OEC is implemented in OpenFoam.

Mechanical and Industrial Engineering 19

Theoretical & Computational Fluid Dynamics Laborator




