

Drag Reduction Using Superhydrophobic Surfaces

Blair Perot Mike Martell

Theoretical and Computational Fluid Dynamics Laboratory

Madrid, April 16, 2012

Superhydrophobicity

Hydrophobic surface = water hating Result of surface/liquid chemistry. Contact angles up to 120 degrees.

Superhydrophobic surface = really water hating Result of surface structures and some chemistry. Contact angles up to 178 degrees. Ultrahydrophobic means the same thing.

Drag

Droplets roll VERY easily off of superhydrophobic surfaces...

Does everything slide off superhydrophobic surfaces easily?

Suezmax Crude Carrier 25% drag reduction = \$5500 per day

How it Works

Take a rough surface. Chemically treat it to hate water.

Now the water will make vapor pockets on the surface.

4

Configuration

Ridges

Top Wall Free Surface Interface No-Slip Surface Periodic $| \leftarrow w \longrightarrow | d | \leftarrow$

Flat Surface

- Just Calculate the Water
- No-slip on posts/ridges
- Slip on surface
- w = spacing
- d = size

Posts

Computational Setup

Constant pressure gradient

Periodic in 2 directions

Staggered Mesh (2nd order)

Exact Fractional Step for Incompressibility/Pressure

Locally conserves mass, momentum, vorticity, and kinetic energy

3-step low-storage Runge-Kutta Runs in Parallel and on GPUs

Hardware

Midnight: Alaska Opteron Cluster

Orion: Local 8 GPUs 1924 Cores ~200x 1 CPU core 7.2 GB (256x256x512) \$4000 total

Validation

 $Re_{\tau} = 395$

Regular Channel Resolution of 256³ Symbols = Moser et al. Lines = current simulations.

Resolution $\operatorname{Re}_{\tau} = 180$

Ridges Resolution of 128³ and 256³ $d^+ = w^+ = 34$ 8 (or 16) mesh points per ridge (or gap)

Averaging

Cases

Shape Size Spacing Re

Line Types				
$\text{Re}_{T} \sim 180$				
Re _T ~ 395				
Re _T ~ 590				
Smooth (all)				

Geometries, Symbols, and Reynolds Numbers					
Case	Symbol	${\rm Re_{\tau}}\sim180$	Re _t ~ 395	Re ₁ ~ 590	
4 - 4 ridges		√	✓		
8 - 8 ridges	Δ	\checkmark	✓	\checkmark	
8 - 13 ridges	\diamond	√			
8 - 24 ridges	∇	√			
8 - 8 posts		\checkmark			
8 - 13 posts	\diamond	√			
8 - 24 posts		\checkmark	\checkmark	\checkmark	

$\begin{array}{c} \textbf{Spacing} \\ \textbf{Ridges} \quad \textbf{Re}_{\tau} = 180 \\ \textbf{Velocity} \end{array}$

12

Spacing

Ridges $\operatorname{Re}_{\tau} = 180$ **Turbulence**

Shape Re_{τ} =180 Velocity

Posts

Ridges

14

Reynolds Number

Velocity 8-8 Ridges

Posts Look the Same

15

Reynolds Number

Turbulence 8-8 Ridges

Angle

Velocity 4-4 Ridges Transverse Dierection

Velocity 8-24 Posts 17.5 degrees

Overview

Best = Aligned posts with large spacing Chemistry is not very important

Structures

$$Re_{\tau} = 180$$

8-8 Ridges
(8 of them)

$$\operatorname{Re}_{\tau} = 590$$

(resolution of 32-32)

8-8

 $y \xrightarrow{50^{+} H} \xrightarrow{1770^{+}} 214.6^{+}$ - Slip (gap) - No-Slip (ridge)

Flow Field 8-24 posts $\operatorname{Re}_{\tau} = 180$

Flow Field 8-8 ridges $\operatorname{Re}_{\tau} = 180$

Flow Field

Regular Channel y+ = 21 8-8 Ridges y+ = 12

Same Shear

Shear Stress Scaling

Scale with the local shear velocity. Turbulent B.L. still scales the same with odd BCs.

Superhydrophobic surfaces reduce drag.

Spacing matters the most (larger = better).

• Up to 37% drag reduction

Still behaves very like a turbulent B.L.

Future

- Delayed Transition
- Delayed Separation
- Reduced Fouling
- Effects on Particles
- Macroscopic BCs

www.ecs.umass.edu/mie/tcfd/Publications.html

