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ABSTRACT
Many core processors are now becoming widely commer-
cially available. The possibility of using these types of pro-
cessors for high performance computing applications is there-
fore of some interest. This work will compare the perfor-
mance and power consumption of the Tilera Pro64 proces-
sor, with a quad-core CPU and with a GPU on three differ-
ent scientific computing benchmarks: GUPS (memory ac-
cess speed), Large Sparse Matrix Multiply (scientific com-
puting), and Smith-Waterman sequencing (bio-informatics).
The performance of the Tilera, CPU and GPU will be in-
vestigated as a function of the number of cores used and as
a function of the energy consumption to complete a task.
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1. INTRODUCTION
Processors with a large number of on chip cores are now

becoming commonly commercially available. Tilera proces-
sors have been available since late 2007. They currently
come with 64 cores, and 100 cores will be shipped in 2012.
In November 2011, AMD announced its 16-core processor.
Intel released a 48-core prototype to University researchers
in April 2011 and will release Knight’s core late 2012 to 2013
for high performance computing applications. One impor-
tant aspect of these many-core designs is their low power
consumption per core. The Intel chip reportedly draws no
more than 125 W for all 48 cores. The Tilera-64 draws only
about 50 W for 64 cores. Since power consumption, and the
resultant cooling costs, can dominate supercomputer costs it
is some interest to evaluate the potential of these many core
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chips for typical supercomputing applications. Our evalua-
tion of these many-core architectures will focus on scalability
and performance per Watt when applied to scientific com-
puting applications.

The Tilera and Intel marketing plans are focused on com-
mercial server farms, not supercomputers for scientific com-
puting. However, high performance computing (HPC) is one
potential application for these processors. GPUs provide
similar computing benefits and are also now being incorpo-
rated into recent supercomputer designs. This project will
evaluate the potential performance attributes of many-core
processors on a few select and hopefully reasonably repre-
sentative scientific computing benchmarks.

In 2007, Tilera launched its first many-core architecture
with 64-core on a single chip. The main goals in Tilera ar-
chitecture are to provide high performance cores that com-
municating via cache-coherent iMesh interconnect network
architecture and low power hardware [19]. Figure 1 shows
Tile processor hardware architecture with detail of an indi-
vidual tile’s structure.

The iMesh interconnect architecture provides high band-
width and low latency communication between tiles. Each
tile is a powerful, full-featured computing system that can
independently run an entire symmetric multi-processing op-
erating system. Each tile operates at 866 MHz and imple-
ments a 32-bit integer processor engine utilizing a three-way
Very Long Instruction Word (VLIW) architecture with 64-
bit instruction bundle. Each tile has 16K L1 instruction
cache, 8K L1 data cache and unified 64K L2 cache. Also
there is 4MByte L3 cache distributed across tiles. There
are four on-chip-memory controllers, each supporting 64-bit
DDR2 DRAM (with optional ECC protection) and operat-
ing at 6.4 GB/s, for a peak memory bandwidth of 25.6 GB/s.
Tilera also has two full-duplex XAUI-based 10Gb Ethernet,
two 4-lane PCI Express ports and two onboard 10/100/1000
Ethernet MACs with RGMII (Reduced Gigabit Media In-
dependent Interface) interfaces [20].

There are number of previous benchmark implementations
on the Tilera [2, 3, 4, 7, 8, 10, 12, 13, 17, 21, 22, 23].

Bornstein et al. [4] implemented image analysis onboard
a Mars rover. But Tilera processors don’t support float-
ing point form hardware so all floating point operations are
emulated in software that causes reduced performance for
Tilera. They reported that a conversion from floating point
input data to integer increased the speed by a factor of 5.
When using many cores they achieved 8 and 9.7 times the



Figure 1: Tile processor hardware architecture with detail of an individual tile’s structure (Figure from Tilera
data sheet [20])

speed of a single tile (single core) when using 16 and 32 tiles
respectively.
Ha et al. [10] studied the scalability problem for dynamic

analysis on TILE64 processor. They obtained a benefit from
using the fast inter-core communication between tiles for
dynamic analysis.
Berezecki et al. [3] implemented key-value store Mem-

cached on TILEPro64 and compared results with a 4-core
Intel Xeon L5520 and an 8-core AMD Opteron 6128 HE.
They achieved 5 times speedup compared to a single core
of CPUs and almost 2 times speed up compared to all the
cores of CPUs. They also reported that the TILEPro had 3
to 4 times better performance/Watt compared to the CPUs.
Yan et al. [23] implemented the accelerated deblocking

filter of the H.264/AVC. They achieved an overall decoding
speedup of 1.5 and 2 times for the HD and SD videos.
Richardson et al. [17] implemented some space applica-

tions on TILEPro64 processor. They achieved 23 times
speedup compared to the single tile when 32 tiles were used
for the sum of the absolute difference. They also reported
linear speedup up to 8 tiles.
Ulmer et al. [21] applied a text document similarity bench-

mark based on the Term Frequency Inverse Document met-
ric on the Tilera and an FPGA and compared results with
sequential CPU runs. They achieved 4 times speedup for
the Tilera when compared to the single core of 2.2 GHz x86
processor.
In this chapter, we are interested in HPC benchmarks

related to scientific computations and the scalability, per-
formance, and power consumption of the Tilera processor.
The benchmark cases are: GUPS, large unstructured sparse
matrix multiply the Smith-Waterman algorithm (SSCA#1
kernels 1) and 3D FFT.

2. GIGA UPDATE PER SECONDS (GUPS)
The GUPS benchmark [1] was ported to the Tilera. The

main goal in this benchmark is to test the random memory
access speed of the hardware. The CPU and GPU version
of the GUPS benchmark were also used in order to com-
pare the Tilera results with other known architectures. The
computations were iterated 10 times in order to get accu-
rate timings. The results presented herein are based on the
average of the 10 iterations.

2.1 Strong and Weak Scaling
Figure 2 shows the GUPS (giga-updates per second) for

the strong scaling (a constant problem size with varying
numbers of tiles) and the GUPS/Tile for weak scaling (prob-
lem size per tile is kept constant at 1M) cases. This figure
shows that the GUPS is linear with the number of cores only
up to 4 cores (because there are 4 memory channels on the
Tilera). With larger numbers of cores, the GUPS is below
the linear ideal performance. With 48 cores active (out of
a maximum of 63) the Tilera is roughly 2 times faster than
one core of the CPU and 8 times slower than GPU for strong
scaling(the GPU performance is divided by 10 to more easily
place it on the graph). For the weak scaling, as the num-
ber of tiles increases the GUPS/Tile decreases. This occurs
because the tiles must share the limited memory bandwidth.

Because the Tilera code is parallel, there is a possibility of
a read before write conflict. The Tilera’s results were com-
pared with the CPU results (which do not have this issue).
The error rate was negligible and a low level of error is said
to be acceptable in the GUPS benchmark specification.

2.2 Power Consumption
Table 1 and figure 3 show the results for power consump-

tion for the GUPS benchmark. The Tilera Pro64 uses 9
times less energy compared to a single core of the AMD
quad-core Phenom II X4. But compared to the GPU, the
energy consumption is roughly equal. The energy efficiency
is given by,
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Figure 2: GUPS for the (a) strong and (b) weak scaling cases for GUPS benchmark compared to a single
core of an AMD quad-core Phenom II X4 (red circle) and compared to a Tesla C2070 GPU (blue circle)

Table 1: Strong scaling results for GUPS benchmark
for Tilera Pro64 comparing the power consumption
to the single core of an AMD quad-core Phenom II
X4 and Tesla C2070 GPU

EnergyEfficiency =
Power(CPUorGPU) × Time(CPUorGPU)

Power(Tilera) × Time(Tilera)

(1)
A low efficiency is better as it implies less energy is used

to complete a task. An efficiency less than one implies the
CPU or GPU is more energy efficient than the Tilera.
Table 1 shows that for this benchmark, power consump-

tion for tilera (with 48 tiles), CPU (single core) and GPU
are 20, 69 and 120 Watts, repectively.

3. SPARSE VECTOR-MATRIX MULTIPLI-
CATION

Sparse vector-matrix multiplication is a common random
memory operation found in many high performance comput-
ing codes. The equation below shows the core formula for
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the 7-point-stencil sparse vector-matrix multiplication that
represents the classic discrete 3D Laplacian operation.

Di,j,k = Bi,j,k×

(Ai+1,j,k +Ai−1,j,k)× dxici × dxivi+
(Ai,j+1,k +Ai,j−1,k)× dyicj × dyivj+
(Ai,j,k+1 +Ai,j,k−1)× dzick × dzivk

+

Ai,j,k × Ci,j,k (2)

Two different algorithmic approaches on the Tilera were
tested: plane marching and block marching. In the plane
marching, every tile is responsible for a XY plane from the
3D domain. In the block marching approach, the 3D domain
is divided into hexahedra subdomains of size 8 × 8 × NZ,
and every tile is responsible for computing a subdomain.
This is similar to the GPU layout (which uses 16× 16×NZ
subdomain for each GPU multiprocessor). Plane and block
marching have different advantages. In the plane marching
approach hardware can load the XY plane to its own cache
(small problem size). In the block marching approach, hard-
ware can load z−1 and z data items into its cache. We tested
different block sizes and 8× 8 is the most efficient block size
for this approach on the Tilera Pro64 card.

3.1 Performance Results
Figure 4 shows the MCUPS (millions of cell updates) and

speedup for 128×128×128 and 256×256×256 total problem
sizes.
In order to show GPU result on the same graph, the

MCUPS for the GPU is divided by 100. MCUPS are millions
of cell updates (or results, Dijk) computed per second. Each
result formally requires reading 7 data values (A) and two
constants (B and C) and performing a number of additions
and multiplications.
For both algorithm approaches on the Tilera the perfor-

mance is very similar. For small sizes, plane marching has
slightly better performance than block marching. On the
other hand, block marching has better performance than
plane marching for large problems. A speedup of around 3×
is obtained for sparse vector-matrix multiplication on very
large matrices 2563 when the whole Tilera is compared to 1
core of the AMD CPU.

3.2 Power Consumption
Table 2 shows the power consumption results for Sparse

Vector-Matrix multiplication benchmark. The Tilera Pro64
uses up to 21 times less power than a single core of AMD
quad-core Phenom II X4. However, it is perhaps better to
look at the energy efficiency of the Tilera, which is the total
energy used vs. the energy used by the CPU or the GPU.
The table 2 shows that the Tilera is 16× more energy

efficient than the CPU and 5× less efficient than the GPU.
However, in practice, the Tilera requires a host (which draws
200-300 W of base power). If we were to account for the base
power and use 4 (rather than 1 core) of the CPU, the Tilera
would have the same efficiency as the CPU.
Figure 5 shows the speedup and energy efficiency of the

Tilera Pro64 compared to a CPU, GPU. The results show
that up to 8 tiles the energy efficiency increases, and after
that with increasing the number of tiles the energy efficiency
is the same or decreasing. This shows that the power con-
sumption on the Tilera is directly proportional to the num-
ber of memory accesses being performed.
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Figure 4: (a) MCUPS for 1283 and 2563 problem
sizes using a Tilera Pro64 (with different numbers
of tiles), a single core of an AMD quad-core Phenom
II X4, and a Tesla C2070 GPU. (b) Speedup of the
Tilera versus one core of the AMD CPU
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Figure 5: (a) Speedup and (b) energy efficiency for the 2563 problem size for Tilera Pro64 compared to the
single core of an AMD quad-core Phenom II X4 and compared to a Tesla C2070 GPU.

Table 2: Power consumption for sparse vector-
matrix multiplication (256×256×256) for Tilera Pro64
comparing to the single core of AMD quad-core Phe-
nom II X4 and Tesla C2070

4. SMITH-WATERMAN ALGORITHM

4.1 Anti-Diagonal Algorithm
Two different approaches to solving the Smith-Waterman

algorithm were developed for the Tilera Pro64. The first
one is the anti-diagonal approach. Because every number in
the Smith-Waterman table anti-diagonal is independent, it
is possible to do the calculation in parallel. Table 3 shows
the results for this approach. The same approach was used
on the CPU to get a fair comparison.
With this approach the MCUPS (millions of cell updates

per second) is less than or equal to a single core of the AMD
quad-core Phenom II X4. The problem with this approach
is, when marching along the diagonal, the memory accesses
miss the cache and the Smith-Waterman algorithm is then
limited by the random memory access speed.

Table 3: Results for anti-diagonal Smith-Waterman
algorithm with 59 tiles compared to a single core of
an AMD quad-core Phenom II X4

4.2 Row Approach
In the second approach (row approach) the database is

divided between the tiles and each subsection of the Smith-
Waterman table is calculated in parallel [15, 14]. In this
approach some table overlap is necessary to overcome any
dependencies between the subsections of the table. For large
Smith-Waterman problems the overlap length is small com-
pared to the length of each subsection and is negligible.

4.2.1 Strong Scaling
Figures 6 shows the result for strong scaling (problem size

is constant) for kernel 1 of the SSCA#1 benchmark. In
this kernel, the Smith-Waterman table is computed and the
largest table values (200 of them) and their locations in the
table are saved. These are the end points of well aligned
sequences, but the sequences themselves are not constructed
or saved.

Almost 15× speedup is obtained for the table evaluation
compared to a single core of an AMD quad-core Phenom II
X4. Note that the MCUPS for the row-access method on the
Tilera is almost 100× faster than anti-diagonal approach.
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Figure 6: Strong scaling for kernel 1 (a) MCUPS and (b) speedup for row-access Smith-Waterman algorithm
with Tilera Pro64 compared with a single core of an AMD quad-core Phenom II X4.

Table 4: Weak scaling results for row approach
Smith-Waterman algorithm for kernel 1 with single
core of AMD quad-core Phenom II X4 and Tilera

4.2.2 Weak Scaling
Figures 7 shows the results for weak scaling (problem size

per tile is constant) for kernel 1. The Tilera gets almost
14× speedup, compared to a single core of an AMD quad-
core Phenom II X4.
Table 4 shows the MCUPS and speedup for weak scaling

with row approach for Smith-Waterman algorithm. This
uses 32,768 table entries per tile.

4.3 Power Consumption
Table 5 shows the power and energy consumption results

for the first kernel of the sequence matching benchmark
(SSCA#1). The Tilera Pro64 uses from 30-50 times less
energy compared to the single core of an AMD quad-core
Phenom II X4. It was determined that the problem size
doesn’t have any effect on power consumption.

Table 5: Results for first kernel of SSCA#1 for
Tilera Pro64 comparing to the single core of AMD
quad-core Phenom II X4

Figure 8 shows the power and energy efficiency of the
Tilera Pro64 compared to a single core of an AMD quad-
core Phenom II X4. The energy efficiency is given by Equ.
??.

Note that after 8 tiles the energy consumption is constant,
so the power draw is directly proportional to the work being
performed.

It should also be noted that these energy efficiency calcu-
lations do not include the base power. In practice the Tilera
and the AMD quad core require a host that draws 200-300 W
when idle. This base power (of the host) will dominate the
energy consumption. For this reason, the additional power
the Tilera or the CPU draws when operating is essentially
negligible in practice.

5. CONCLUSIONS
We have implemented three important high performance

computing benchmarks on the Tilera Pro64. Like every
multi and many core architectures, the Tilera has some ad-
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Figure 7: Weak scaling for kernel 1 (a) MCUPS and (b) speedup for row-access Smith-Waterman algorithm
with Tilera Pro64 compared with a single core of an AMD quad-core Phenom II X4.

vantages and disadvantages. We have divided these features
into seven different design metrics; performance, bandwidth,
price, software, hardware power and scalability.
Based purely on speed, the Tilera is roughly competitive

with a CPU and significantly slower than a GPU. The reason
for the relatively low speeds is primarily due to the design
of the memory subsystem.
Memory bandwidth is the most critical hardware perfor-

mance measure for all the benchmarks tested in this work.
The Tilera Pro64 has less bandwidth to main memory than a
typical CPU or GPU. For example the Tilera Pro64 has max-
imum of 14 GB/s and modern CPUs are around 40 GB/s
and GPUs are roughly 180 GB/s. Newer GPUs have an L1
and an L2 cache (like the CPU and Tilera). The newest
Tilera (100-core, not yet released) uses DDR3 instead of
DDR2 so its maximum theoretical bandwidth is close to a
modern CPU (around 65 GB/s). GPUs currently use DDR5
memory. The Tilera has essentially 4 memory channels to
main memory. After 8 tiles start accessing memory, the
performance with more tiles is relatively small. It has a fast
inter-tile communication network, but we found it very dif-
ficult to use this hardware characteristic to any substantial
advantage for the 4 benchmarks presented here.
One can buy the latest GPU for around $500-$3000, an

Intel CPU (10/20 core/thread E7 Xenon series) for around
$4000, and an AMD 12-core for around $1600. The new
Tilera with 100 tiles (cores) costs around $11000. It seems
that Tilera hardware is expensive compared to CPUs and
GPUs. This is probably due to the economies of scale and
the high demand for CPU and GPU products outside the
area of high performance computing.
The CPU and the GPU (CUDA and OpenCL) program-

ming languages are well known and more up to date than
the Tilera’s Multicore Development Environment (MDE).
However, we should mention that changing codes that are
already written in C (not C++) to the Tilera language is
very straightforward. One just needs to modify the algo-
rithm in order to take advantage of the Tilera architecture.

The Tilera appears to be compatible with only a few sys-
tem configurations. For example, the available MDE compil-
ers are compatible with only three specific versions of Linux
and three hardware systems (CPU and motherboards).

The Tilera uses 75% less power (above the base/host power)
Roughly 24 W extra for the whole TilePro64. Whereas a
GPU takes roughly 115 W per GPU and a 4-core CPU takes
about 110 W for all four cores. More power means more heat
and more cooling. So saving 1 W in power also means sav-
ing another watt in cooling costs. Note however, that the
Tilera requires a host computer a typical host takes 200-300
W to run so that the power savings of the Tilera are actu-
ally highly marginalized by the power costs of maintaining
the Tilera’s host. In addition, the fast speed of the GPU
means that it typically consumes less total energy for a task
than the Tilera even though its power consumption is much
higher.

Only one Tilera card was tested in this work. However,
the Tilera has a number of interconnect options on the card
itself. So unlike a GPU, it may be possible to bypass the
CPU host and directly connect the Tilera cards together.
This might alleviate the MPI bottleneck currently experi-
enced when using many GPUs in a cluster environment.
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